Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Cosmology, Relativity, and Gravity

The Ages Of The Thin Disk, Thick Disk, And The Halo From Nearby White Dwarfs, Mukremin Kilic, Ted Von Hippel, Jeffrey A. Munn, Hugh C. Harris, James W. Liebert, Et Al. Aug 2019

The Ages Of The Thin Disk, Thick Disk, And The Halo From Nearby White Dwarfs, Mukremin Kilic, Ted Von Hippel, Jeffrey A. Munn, Hugh C. Harris, James W. Liebert, Et Al.

Ted von Hippel

We present a detailed analysis of the white dwarf luminosity functions derived from the local 40 pc sample and the deep proper motion catalog of Munn et al. (2014, 2017). Many of the previous studies ignored the contribution of thick disk white dwarfs to the Galactic disk luminosity function, which results in an erronous age measurement. We demonstrate that the ratio of thick/thin disk white dwarfs is roughly 20% in the local sample. Simultaneously fitting for both disk components, we derive ages of 6.8-7.0 Gyr for the thin disk and 8.7 ± 0.1 Gyr for the thick disk from the …


Stellar Populations And The White Dwarf Mass Function: Connections To Supernova Ia Luminosities, Ted Von Hippel, G. D. Bothum, R. A. Schommer Aug 2019

Stellar Populations And The White Dwarf Mass Function: Connections To Supernova Ia Luminosities, Ted Von Hippel, G. D. Bothum, R. A. Schommer

Ted von Hippel

We discuss the luminosity function of SNe Ia under the assumption that recent evidence for dispersion in this standard candle is related to variations in the white dwarf mass function (WDMF) in the host galaxies. We develop a simple parameterization of the WDMF as a function of age of a stellar population and apply this to galaxies of different morphological types. We show that this simplified model is consistent with the observed WDMF of Bergeron et al. (1992) for the solar neighborhood. Our simple models predict that WDMF variations can produce a range of more than 1.8 mag in MB(SN …


Magnetospherically-Trapped Dust And A Possible Model For The Unusual Transits At Wd1145+017, J. Farihi, Ted Von Hippel, J. E. Pringle Aug 2019

Magnetospherically-Trapped Dust And A Possible Model For The Unusual Transits At Wd1145+017, J. Farihi, Ted Von Hippel, J. E. Pringle

Ted von Hippel

The rapidly evolving dust and gas extinction observed towardsWD1145+017 has opened a real-time window onto the mechanisms for destruction-accretion of planetary bodies onto white dwarf stars, and has served to underline the importance of considering the dynamics of dust particles around such objects. Here it is argued that the interaction between (charged) dust grains and the stellar magnetic field is an important ingredient in understanding the physical distribution of infrared emitting particles in the vicinity of such white dwarfs. These ideas are used to suggest a possible model for WD 1145+017 in which the unusual transit shapes are caused by …


Galactic Open Clusters, Ted Von Hippel Aug 2019

Galactic Open Clusters, Ted Von Hippel

Ted von Hippel

The study of open clusters has a classic feel to it since the subject predates anyone alive today. Despite the age of this topic, I show via an ADS search that its relevance and importance in astronomy has grown faster in the last few decades than astronomy in general. This is surely due to both technical reasons and the interconnection of the field of stellar evolution to many branches of astronomy. In this review, I outline what we know today about open clusters and what they have taught us about a range of topics from stellar evolution to Galactic structure …


What Do We Know About Lorentz Symmetry?, Q. G. Bailey Jun 2019

What Do We Know About Lorentz Symmetry?, Q. G. Bailey

Quentin Bailey

Precision tests of Lorentz symmetry have become increasingly of interest to the broader gravitational and high-energy physics communities. In this talk, recent work on violations of local Lorentz invariance in gravity is discussed, including recent analysis constraining Lorentz violation in a variety of gravitational tests. The arena of short-range tests of gravity is highlighted, demonstrating that such tests are sensitive to a broad class of unexplored signals that depend on sidereal time and the geometry of the experiment.