Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Cosmology, Relativity, and Gravity

Search For Higgs Shifts In White Dwarfs, Roberto Onofrio, Gary A. Wegner Aug 2014

Search For Higgs Shifts In White Dwarfs, Roberto Onofrio, Gary A. Wegner

Dartmouth Scholarship

We report on a search for differential shifts between electronic and vibronic transitions in carbon-rich white dwarfs BPM 27606 and Procyon B. The absence of differential shifts within the spectral resolution and taking into account systematic effects such as space motion and pressure shifts allows us to set the first upper bound of astrophysical origin on the coupling between the Higgs field and the Kreschmann curvature invariant. Our analysis provides the basis for a more general methodology to derive bounds to the coupling of long-range scalar fields to curvature invariants in an astrophysical setting complementary to the ones available from …


Entropic Measure For Localized Energy Configurations: Kinks, Bounces, And Bubbles, Marcelo Gleiser, Nikitas Stamatopoulos Jul 2012

Entropic Measure For Localized Energy Configurations: Kinks, Bounces, And Bubbles, Marcelo Gleiser, Nikitas Stamatopoulos

Dartmouth Scholarship

No abstract provided.


Generation Of Coherent Structures After Cosmic Inflation, Marcelo Gleiser, Noah Graham, Nikitas Stamatopoulos May 2011

Generation Of Coherent Structures After Cosmic Inflation, Marcelo Gleiser, Noah Graham, Nikitas Stamatopoulos

Dartmouth Scholarship

We investigate the nonlinear dynamics of hybrid inflation models, which are characterized by two real scalar fields interacting quadratically. We start by solving numerically the coupled Klein-Gordon equations in static Minkowski spacetime, searching for possible coherent structures. We find long-lived, localized configurations, which we identify as a new kind of oscillon. We demonstrate that these two-field oscillons allow for “excited” states with much longer lifetimes than those found in previous studies of single-field oscillons. We then solve the coupled field equations in an expanding Friedmann-Robertson-Walker spacetime, finding that as the field responsible for inflating the Universe rolls down to oscillate …


Long-Lived Time-Dependent Remnants During Cosmological Symmetry Breaking: From Inflation To The Electroweak Scale, Marcelo Gleiser, Noah Graham, Nikitas Stamatopoulos Aug 2010

Long-Lived Time-Dependent Remnants During Cosmological Symmetry Breaking: From Inflation To The Electroweak Scale, Marcelo Gleiser, Noah Graham, Nikitas Stamatopoulos

Dartmouth Scholarship

Through a detailed numerical investigation in three spatial dimensions, we demonstrate that long-lived time-dependent field configurations emerge dynamically during symmetry breaking in an expanding de Sitter spacetime. We investigate two situations: a single scalar field with a double-well potential and an SU(2) non-Abelian Higgs model. For the single scalar, we show that large-amplitude oscillon configurations emerge spontaneously and persist to contribute about 1.2% of the energy density of the Universe. We also show that for a range of parameters, oscillon lifetimes are enhanced by the expansion and that this effect is a result of parametric resonance. For the SU(2) case, …


Sudden Gravitational Transition, Robert R. Caldwell, William Komp, Leonard Parker, Daniel A. T. Vanzella Jan 2006

Sudden Gravitational Transition, Robert R. Caldwell, William Komp, Leonard Parker, Daniel A. T. Vanzella

Dartmouth Scholarship

We investigate the properties of a cosmological scenario which undergoes a gravitational phase transition at late times. In this scenario, the Universe evolves according to general relativity in the standard, hot big bang picture until a redshift z≲1. Nonperturbative phenomena associated with a minimally-coupled scalar field catalyzes a transition, whereby an order parameter consisting of curvature quantities such as R2, RabRab, RabcdRabcd acquires a constant expectation value. The ensuing cosmic acceleration appears driven by a dark-energy component with an equation-of-state w<−1. We evaluate the constraints from type 1a supernovae, the cosmic microwave background, and other cosmological observations. We find that a range of models making a sharp transition to cosmic acceleration are consistent with observations.


Limits Of Quintessence, R. R. Caldwell, Eric V. Linder Sep 2005

Limits Of Quintessence, R. R. Caldwell, Eric V. Linder

Dartmouth Scholarship

We present evidence that the simplest particle-physics scalar-field models of dynamical dark energy can be separated into distinct behaviors based on the acceleration or deceleration of the field as it evolves down its potential towards a zero minimum. We show that these models occupy narrow regions in the phase plane of w and w′, the dark energy equation of state and its time derivative in units of the Hubble time. Restricting an energy scale of the dark energy microphysics limits how closely a scalar field can resemble a cosmological constant. These results, indicating a desired measurement resolution of order σ(w′)≈(1+w), …


Dark-Energy Evolution Across The Cosmological-Constant Boundary, Robert R. Caldwell, Michael Doran Aug 2005

Dark-Energy Evolution Across The Cosmological-Constant Boundary, Robert R. Caldwell, Michael Doran

Dartmouth Scholarship

We explore the properties of dark-energy models for which the equation of state, w, defined as the ratio of pressure to energy density, crosses the cosmological-constant boundary w=−1. We adopt an empirical approach, treating the dark energy as an uncoupled fluid or a generalized scalar field. We describe the requirements for a viable model, in terms of the equation of state and sound speed. A generalized scalar field cannot safely traverse w=−1, although a pair of scalars with w>−1 and w<−1 will work. A fluid description with a well-defined sound speed can also cross the boundary. Contrary to expectations, such a crossing model does not instantaneously resemble a cosmological constant at the moment w=−1 since the density and pressure perturbations do not necessarily vanish. But because a dark energy with w<−1 dominates only at very late times, and because the dark energy is not generally prone to gravitational clustering, then crossing the cosmological-constant boundary leaves no distinct imprint.


Strong Dissipative Behavior In Quantum Field Theory, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos Nov 1998

Strong Dissipative Behavior In Quantum Field Theory, Arjun Berera, Marcelo Gleiser, Rudnei O. Ramos

Dartmouth Scholarship

We study the conditions under which an overdamped regime can be attained in the dynamic evolution of a quantum field configuration. Using a real-time formulation of finite temperature field theory, we compute the effective evolution equation of a scalar field configuration, quadratically interacting with a given set of other scalar fields. We then show that, in the overdamped regime, the dissipative kernel in the field equation of motion is closely related to the shear viscosity coefficient, as computed in scalar field theory at finite temperature. The effective dynamics is equivalent to a time-dependent Ginzburg-Landau description of the approach to equilibrium …