Open Access. Powered by Scholars. Published by Universities.®

Other Applied Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Doctoral Dissertations

Discipline
Institution
Keyword
Publication Year

Articles 1 - 18 of 18

Full-Text Articles in Other Applied Mathematics

Birds And Bioenergy: A Modeling Framework For Managed Landscapes At Multiple Spatial Scales, Jasmine Asha Kreig Aug 2021

Birds And Bioenergy: A Modeling Framework For Managed Landscapes At Multiple Spatial Scales, Jasmine Asha Kreig

Doctoral Dissertations

This dissertation examines the design and management of bioenergy landscapes at multiple spatial scales given numerous objectives. Objectives include biodiversity outcomes, biomass feedstock yields, and economic value.

Our study examined biodiversity metrics for 25 avian species in Iowa, including subsets of these species related to ecosystem services. We used our species distribution model (SDM) framework to determine the importance of predictors related to switchgrass production on species richness. We found that distance to water, mean diurnal temperature range, and herbicide application rate were the three most important predictors of biodiversity overall. We found that 76% of species responded positively to …


Preconditioned Nesterov’S Accelerated Gradient Descent Method And Its Applications To Nonlinear Pde, Jea Hyun Park Aug 2021

Preconditioned Nesterov’S Accelerated Gradient Descent Method And Its Applications To Nonlinear Pde, Jea Hyun Park

Doctoral Dissertations

We develop a theoretical foundation for the application of Nesterov’s accelerated gradient descent method (AGD) to the approximation of solutions of a wide class of partial differential equations (PDEs). This is achieved by proving the existence of an invariant set and exponential convergence rates when its preconditioned version (PAGD) is applied to minimize locally Lipschitz smooth, strongly convex objective functionals. We introduce a second-order ordinary differential equation (ODE) with a preconditioner built-in and show that PAGD is an explicit time-discretization of this ODE, which requires a natural time step restriction for energy stability. At the continuous time level, we show …


Machine Learning With Topological Data Analysis, Ephraim Robert Love May 2021

Machine Learning With Topological Data Analysis, Ephraim Robert Love

Doctoral Dissertations

Topological Data Analysis (TDA) is a relatively new focus in the fields of statistics and machine learning. Methods of exploiting the geometry of data, such as clustering, have proven theoretically and empirically invaluable. TDA provides a general framework within which to study topological invariants (shapes) of data, which are more robust to noise and can recover information on higher dimensional features than immediately apparent in the data. A common tool for conducting TDA is persistence homology, which measures the significance of these invariants. Persistence homology has prominent realizations in methods of data visualization, statistics and machine learning. Extending ML with …


Root Stage Distributions And Their Importance In Plant-Soil Feedback Models, Tyler Poppenwimer Dec 2020

Root Stage Distributions And Their Importance In Plant-Soil Feedback Models, Tyler Poppenwimer

Doctoral Dissertations

Roots are fundamental to PSFs, being a key mediator of these feedbacks by interacting with and affecting the soil environment and soil microbial communities. However, most PSF models aggregate roots into a homogeneous component or only implicitly simulate roots via functions. Roots are not homogeneous and root traits (nutrient and water uptake, turnover rate, respiration rate, mycorrhizal colonization, etc.) vary with age, branch order, and diameter. Trait differences among a plant’s roots lead to variation in root function and roots can be disaggregated according to their function. The impact on plant growth and resource cycling of changes in the distribution …


Applications With Discrete And Continuous Models: Harvesting And Contact Tracing, Danielle L. Burton Aug 2020

Applications With Discrete And Continuous Models: Harvesting And Contact Tracing, Danielle L. Burton

Doctoral Dissertations

Harvest plays an important role in management decisions, from fisheries to pest control. Discrete models enable us to explore the importance of timing of management decisions including the order of events of particular actions. We derive novel mechanistic models featuring explicit within season harvest timing and level. Our models feature explicit discrete density independent birth pulses, continuous density dependent mortality, and density independent harvest level at a within season harvest time. We explore optimization of within-season harvest level and timing through optimal control of these population models. With a fixed harvest level, harvest timing is taken as the control. Then …


Mathematical Modeling Of Mixtures And Numerical Solution With Applications To Polymer Physics, John Timothy Cummings Dec 2017

Mathematical Modeling Of Mixtures And Numerical Solution With Applications To Polymer Physics, John Timothy Cummings

Doctoral Dissertations

We consider in this dissertation the mathematical modeling and simulation of a general diffuse interface mixture model based on the principles of energy dissipation. The model developed allows for a thermodynamically consistent description of systems with an arbitrary number of different components, each of which having perhaps differing densities. We also provide a mathematical description of processes which may allow components to source or sink into other components in a mass conserving, energy dissipating way, with the motivation of applying this model to phase transformation. Also included in the modeling is a unique set of thermodynamically consistent boundary conditions which …


Thermal Analysis In A Triple-Layered Skin Structure With Embedded Vasculature, Tumor, And Gold Nanoshells, Casey O. Orndorff Jul 2016

Thermal Analysis In A Triple-Layered Skin Structure With Embedded Vasculature, Tumor, And Gold Nanoshells, Casey O. Orndorff

Doctoral Dissertations

In hyperthermia skin cancer treatment, the objective is to control laser heating of the tumor (target temperatures of 42-46 °C) so that the temperatures of the normal tissue surrounding the tumor remains low enough not to damage the normal tissue. However, obtaining accurate temperature distributions in living tissue related to hyperthermia skin cancer treatment without using an intruding sensor is a challenge. The objective of this dissertation research is to develop a mathematical model that can accurately predict the temperature distribution in the tumor region and surrounding normal tissue induced by laser irradiation. The model is based on a modified …


Modeling Feral Hogs In Great Smoky Mountains National Park, Benjamin Anthony Levy May 2016

Modeling Feral Hogs In Great Smoky Mountains National Park, Benjamin Anthony Levy

Doctoral Dissertations

Feral Hogs (Sus scrofa) are an invasive species that have occupied the Great Smoky Mountains National Park since the early 1900s. Recent studies have revitalized interest in the pest and have produced useful data. The Park has kept detailed records on mast abundance as well as every removal since 1980 including geographic location and disease sampling. Data obtained via Lidar includes both overstory as well as understory vegetation information. In this dissertation, three models were created and analyzed using the detailed data on vegetation, mast, and harvest history. The first model is discrete in time and space and …


Population Modeling For Resource Allocation And Antimicrobial Stewardship, Jason Bintz Aug 2015

Population Modeling For Resource Allocation And Antimicrobial Stewardship, Jason Bintz

Doctoral Dissertations

This dissertation contains two types of population models with applications in conservation biology and epidemiology. In particular, it considers models for resource allocation and antimicrobial stewardship.

In a population model with a parabolic differential equation and density dependent growth, we study the problem of allocating resources to maximize the net benefit in the conservation of a single species while the cost of the resource allocation is minimized. The net benefit is measured in terms of maximizing population abundance and the goal of maximizing abundance is divided between the goal of maximizing the overall abundance across space and time and the …


Impacts Of Climate Change On The Evolution Of The Electrical Grid, Melissa Ree Allen Aug 2014

Impacts Of Climate Change On The Evolution Of The Electrical Grid, Melissa Ree Allen

Doctoral Dissertations

Maintaining interdependent infrastructures exposed to a changing climate requires understanding 1) the local impact on power assets; 2) how the infrastructure will evolve as the demand for infrastructure changes location and volume and; 3) what vulnerabilities are introduced by these changing infrastructure topologies. This dissertation attempts to develop a methodology that will a) downscale the climate direct effect on the infrastructure; b) allow population to redistribute in response to increasing extreme events that will increase under climate impacts; and c) project new distributions of electricity demand in the mid-21st century.

The research was structured in three parts. The first …


Multistep Kinetic Monte Carlo, Holly Nichole Johnson Clark Aug 2014

Multistep Kinetic Monte Carlo, Holly Nichole Johnson Clark

Doctoral Dissertations

Kinetic Monte Carlo (KMC) uses random numbers to simulate the time evolution of processes with well-defined rates. We analyze a multi-step KMC algorithm aimed at speeding up the single-step procedure and apply the algorithm to study a model for the growth of a surface dendrite. The growth of the dendrite is initiated when atoms diffusing on a substrate cluster due to lower hopping rates for highly coordinated atoms. The boundary of the cluster is morphologically unstable when the flux of new atoms is supplied in the far field, a scenario that could be generated by masking a portion of a …


A Viscous Flow Analog To Prandtl’S Optimized Lifting Line Theory Utilizing Rotating Biquadratic Bodies Of Revolution, Mark Nathaniel Callender Dec 2013

A Viscous Flow Analog To Prandtl’S Optimized Lifting Line Theory Utilizing Rotating Biquadratic Bodies Of Revolution, Mark Nathaniel Callender

Doctoral Dissertations

Prandtl’s lifting line theory expanded the Kutta-Joukowski theorem to calculate the lift and induced drag of finite wings. The circulation distribution about a real wing was represented by a superposition of infinitesimal vortex filaments. From this theory, the optimum distribution of circulation was determined to be elliptical. A consequence of this theory led to the prediction that the elliptical chord distribution on a real fixed wing would provide the elliptical circulation distribution. The author applied the same line of reasoning to lift-producing rotating cylinders in order to determine the cylindrical geometry that would theoretically produce an elliptical circulation distribution. The …


Modeling And Control Of Nanoparticle Bloodstream Concentration For Cancer Therapies, Scarlett S. Bracey Oct 2013

Modeling And Control Of Nanoparticle Bloodstream Concentration For Cancer Therapies, Scarlett S. Bracey

Doctoral Dissertations

Currently, the most commonly used treatments for cancerous tumors (chemotherapy, radiation, etc.) have almost no method of monitoring the administration of the treatment for adverse effects in real time. Without any real time feedback or control, treatment becomes a "guess and check" method with no way of predicting the effects of the drugs based on the actual bioavailability to the patient's body. One particular drug may be effective for one patient, yet provide no benefit to another. Doctors and scientists do not routinely attempt to quantifiably explain this discrepancy. In this work, mathematical modeling and analysis techniques are joined together …


Optimal Control For Management In Gypsy Moth Models, Marco Vinisio Martinez Aug 2013

Optimal Control For Management In Gypsy Moth Models, Marco Vinisio Martinez

Doctoral Dissertations

The gypsy moth, Lymantria dispar (L.), is an invasive species and the most destructive forest defoliator in North America. Gypsy moth outbreaks are spatially synchronized over areas across hundreds of kilometers. Outbreaks can result in loss of timber and other forestry products. Greater losses tend to occur to the ecosystem services that forests provide, such as wildlife habitat, carbon sequestration, and nutrient cycling. The United States can be divided in three different areas: a generally infested area (populations established), an uninfested area (populations not established), and a transition zone between the two. There are different management programs matching these different …


A Mathematical Model And Numerical Method For Thermoelectric Dna Sequencing, Liwei Shi Jul 2013

A Mathematical Model And Numerical Method For Thermoelectric Dna Sequencing, Liwei Shi

Doctoral Dissertations

DNA sequencing is the process of determining the precise order of nucleotide bases, adenine, guanine, cytosine, and thymine within a DNA molecule. It includes any method or technology that is used to determine the order of the four bases in a strand of DNA. The advent of rapid DNA sequencing methods has greatly accelerated biological and medical research and discovery. Thermoelectric DNA sequencing is a novel method to sequence DNA by measuring the heat that is released when DNA polymerase inserts a deoxyribonucleoside triphosphate into a growing DNA strand. The thermoelectric device for this project is composed of four parts: …


Generalized Finite-Difference Time-Domain Schemes For Solving Nonlinear Schrödinger Equations, Frederick Ira Moxley Iii Jul 2013

Generalized Finite-Difference Time-Domain Schemes For Solving Nonlinear Schrödinger Equations, Frederick Ira Moxley Iii

Doctoral Dissertations

The nonlinear Schrödinger equation (NLSE) is one of the most widely applicable equations in physical science, and characterizes nonlinear dispersive waves, optics, water waves, and the dynamics of molecules. The NLSE satisfies many mathematical conservation laws. Moreover, due to the nonlinearity, the NLSE often requires a numerical solution, which also satisfies the conservation laws. Some of the more popular numerical methods for solving the NLSE include the finite difference, finite element, and spectral methods such as the pseudospectral, split-step with Fourier transform, and integrating factor coupled with a Fourier transform. With regard to the finite difference and finite element methods, …


Analysis Of Solvability And Applications Of Stochastic Optimal Control Problems Through Systems Of Forward-Backward Stochastic Differential Equations., Kirill Yevgenyevich Yakovlev May 2012

Analysis Of Solvability And Applications Of Stochastic Optimal Control Problems Through Systems Of Forward-Backward Stochastic Differential Equations., Kirill Yevgenyevich Yakovlev

Doctoral Dissertations

A stochastic metapopulation model is investigated. The model is motivated by a deterministic model previously presented to model the black bear population of the Great Smoky Mountains in east Tennessee. The new model involves randomness and the associated methods and results differ greatly from the deterministic analogue. A stochastic differential equation is studied and the associated results are stated and proved. Connections between a parabolic partial differential equation and a system of forward-backward stochastic differential equations is analyzed.

A "four-step" numerical scheme and a Markovian type iterative numerical scheme are implemented. Algorithms and programs in the programming languages C and …


Dynamics Of Mushy Layers On A Finite Domain, Nicholas Ray Gewecke May 2011

Dynamics Of Mushy Layers On A Finite Domain, Nicholas Ray Gewecke

Doctoral Dissertations

p, li { white-space: pre-wrap; }

Mushy layers are regions of intermixed liquid and solid which can arise during the solidification of binary alloys, generally consisting of dendritic solids with solute-rich liquid in the interstices. They occur due to an instability resulting from the buildup of rejected solute along the solidification front. Liquid ahead of the front becomes supercooled, so disturbances to the interface grow more rapidly than the interface itself. A simple experiment has a tank filled with a uniform solution at uniform temperature being placed upon a cold surface. Early on, a small solid layer forms at the …