Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2023

Discipline
Institution
Keyword
Publication

Articles 1 - 14 of 14

Full-Text Articles in Ordinary Differential Equations and Applied Dynamics

Nonsmooth Epidemic Models With Evolutionary Game Theory, Cameron Morin Dec 2023

Nonsmooth Epidemic Models With Evolutionary Game Theory, Cameron Morin

Electronic Theses and Dissertations

This thesis explores the utilization of game theory and nonsmooth functions to enhance the accuracy of epidemiological simulations. Traditional sensitivity analysis encounters difficulties when dealing with nondifferentiable points in nonsmooth functions. However, by incorporating recent advancements in nonsmooth analysis, sensitivity analysis techniques have been adapted to accommodate these complex functions. In pursuit of more accurate simulations, evolutionary game theory, primarily the replicator equation, is introduced, modeling individuals’ decision making processes when observing others’ choices. The SEIR model is explored in depth, and additional complexities are incorporated, leading to the creation of an expanded SEIR model, the Be-SEIMR model.


Population Dynamics And Bifurcations In Predator-Prey Systems With Allee Effect, Yanni Zeng Dec 2023

Population Dynamics And Bifurcations In Predator-Prey Systems With Allee Effect, Yanni Zeng

Electronic Thesis and Dissertation Repository

This thesis investigates a series of nonlinear predator-prey systems incorporating the Allee effect using differential equations. The main goal is to determine how the Allee effect affects population dynamics. The stability and bifurcations of the systems are studied with a hierarchical parametric analysis, providing insights into the behavioral changes of the population within the systems. In particular, we focus on the study of the number and distribution of limit cycles (oscillating solutions) and the existence of multiple stable states, which cause complex dynamical behaviors. Moreover, including the prey refuge, we examine how our method benefits the low-density animals and affects …


Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt Dec 2023

Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt

All Dissertations

Remotely actuated microscale swimming robots have the potential to revolutionize many aspects of biomedicine. However, for the longterm goals of this field of research to be achievable, it is necessary to develop modelling, simulation, and control strategies which effectively and efficiently account for not only the motion of individual swimmers, but also the complex interactions of such swimmers with their environment including other nearby swimmers, boundaries, other cargo and passive particles, and the fluid medium itself. The aim of this thesis is to study these problems in simulation from the perspective of controls and dynamical systems, with a particular focus …


Study Of Behaviour Change And Impact On Infectious Disease Dynamics By Mathematical Models, Tianyu Cheng Oct 2023

Study Of Behaviour Change And Impact On Infectious Disease Dynamics By Mathematical Models, Tianyu Cheng

Electronic Thesis and Dissertation Repository

This thesis uses mathematical models to study human behaviour changes' effects on infectious disease transmission dynamics. It centers on two main topics. The first concerns how behaviour response evolves during epidemics and the effects of adaptive precaution behaviour on epidemics. The second topic is how to build general framework models incorporating human behaviour response in epidemiological modelling.

In the first project, based on the fact that a fraction of the epidemiologically susceptible population is actually susceptible due to precautions, we present a novel perspective on understanding the infection force, incorporating human protection behaviours. This view explains many existing infection force …


Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann Oct 2023

Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann

Doctoral Dissertations and Master's Theses

Rigid body motion requires formulations where rotational and translational motion are accounted for appropriately. Two Lie groups, the special orthogonal group SO(3) and the space of quaternions H, are commonly used to represent attitude. When considering rigid body pose, that is spacecraft position and attitude, the special Euclidean group SE(3) and the space of dual quaternions DH are frequently utilized. All these groups are Lie groups and Riemannian manifolds, and these identifications have profound implications for dynamics and controls. The trajectory optimization and optimal control problem on Riemannian manifolds presents significant opportunities for theoretical development. Riemannian optimization is an attractive …


Data-Driven Exploration Of Coarse-Grained Equations: Harnessing Machine Learning, Elham Kianiharchegani Aug 2023

Data-Driven Exploration Of Coarse-Grained Equations: Harnessing Machine Learning, Elham Kianiharchegani

Electronic Thesis and Dissertation Repository

In scientific research, understanding and modeling physical systems often involves working with complex equations called Partial Differential Equations (PDEs). These equations are essential for describing the relationships between variables and their derivatives, allowing us to analyze a wide range of phenomena, from fluid dynamics to quantum mechanics. Traditionally, the discovery of PDEs relied on mathematical derivations and expert knowledge. However, the advent of data-driven approaches and machine learning (ML) techniques has transformed this process. By harnessing ML techniques and data analysis methods, data-driven approaches have revolutionized the task of uncovering complex equations that describe physical systems. The primary goal in …


Deep Hybrid Modeling Of Neuronal Dynamics Using Generative Adversarial Networks, Soheil Saghafi May 2023

Deep Hybrid Modeling Of Neuronal Dynamics Using Generative Adversarial Networks, Soheil Saghafi

Dissertations

Mechanistic modeling and machine learning methods are powerful techniques for approximating biological systems and making accurate predictions from data. However, when used in isolation these approaches suffer from distinct shortcomings: model and parameter uncertainty limit mechanistic modeling, whereas machine learning methods disregard the underlying biophysical mechanisms. This dissertation constructs Deep Hybrid Models that address these shortcomings by combining deep learning with mechanistic modeling. In particular, this dissertation uses Generative Adversarial Networks (GANs) to provide an inverse mapping of data to mechanistic models and identifies the distributions of mechanistic model parameters coherent to the data.

Chapter 1 provides background information on …


Complex-Valued Approach To Kuramoto-Like Oscillators, Jacqueline Bao Ngoc Doan May 2023

Complex-Valued Approach To Kuramoto-Like Oscillators, Jacqueline Bao Ngoc Doan

Electronic Thesis and Dissertation Repository

The Kuramoto Model (KM) is a nonlinear model widely used to model synchrony in a network of oscillators – from the synchrony of the flashing fireflies to the hand clapping in an auditorium. Recently, a modification of the KM (complex-valued KM) was introduced with an analytical solution expressed in terms of a matrix exponential, and consequentially, its eigensystem. Remarkably, the analytical KM and the original KM bear significant similarities, even with phase lag introduced, despite being determined by distinct systems. We found that this approach gives a geometric perspective of synchronization phenomena in terms of complex eigenmodes, which in turn …


Adaptive Multirate Infinitesimal Time Integration, Alex Fish May 2023

Adaptive Multirate Infinitesimal Time Integration, Alex Fish

Mathematics Theses and Dissertations

As multiphysics simulations grow in complexity and application scientists desire more accurate results, computational costs increase greatly. Time integrators typically cater to the most restrictive physical processes of a given simulation\add{,} which can be unnecessarily computationally expensive for the less restrictive physical processes. Multirate time integrators are a way to combat this increase in computational costs by efficiently solving systems of ordinary differential equations that contain physical processes which evolve at different rates by assigning different time step sizes to the different processes. Adaptivity is a technique for further increasing efficiency in time integration by automatically growing and shrinking the …


An Integrated Experimental And Modeling Approach To Design Rotating Algae Biofilm Reactors (Rabrs) Via Optimizing Algae Biofilm Productivity, Nutrient Recovery, And Energy Efficiency, Gerald Benjamin Jones May 2023

An Integrated Experimental And Modeling Approach To Design Rotating Algae Biofilm Reactors (Rabrs) Via Optimizing Algae Biofilm Productivity, Nutrient Recovery, And Energy Efficiency, Gerald Benjamin Jones

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Microalgae biofilms have been demonstrated to recover nutrients from wastewater and serve as biomass feedstock for bioproducts. However, there is a need to develop a platform to quantitatively describe microalgae biofilm production, which can provide guidance and insights for improving biomass areal productivity and nutrient uptake efficiency. This paper proposes a unified experimental and theoretical framework to investigate algae biofilm growth on a rotating algae biofilm reactor (RABR). The experimental laboratory setups are used to conduct controlled experiments on testing environmental and operational factors for RABRs. We propose a differential-integral equation-based mathematical model for microalgae biofilm cultivation guided by laboratory …


From Big Farm To Big Pharma: A Differential Equations Model Of Antibiotic-Resistant Salmonella In Industrial Poultry Populations, Rilyn Mckallip Apr 2023

From Big Farm To Big Pharma: A Differential Equations Model Of Antibiotic-Resistant Salmonella In Industrial Poultry Populations, Rilyn Mckallip

Honors Theses

Antibiotics are used in poultry production as prophylaxis, curative treatment, and growth promotion. The first use is as prophylaxis, or prevention of common bacterial diseases. The crowded conditions in concentrated animal feeding operations necessitate management of infectious disease to ensure overall animal health and the profitability of such operations. In these farms, between 20,000 and 125,000 birds are raised in shed-like enclosures [3], with an average of less than one square foot of space per chicken [34]. Antibiotics are currently used in chicken farms to manage and prevent common bacterial diseases such as respiratory and digestive tract infections, as well …


Multilayer Network Model Of Gender Bias And Homophily In Hierarchical Structures, Emerson Mcmullen Jan 2023

Multilayer Network Model Of Gender Bias And Homophily In Hierarchical Structures, Emerson Mcmullen

HMC Senior Theses

Although women have made progress in entering positions in academia and
industry, they are still underrepresented at the highest levels of leadership.
Two factors that may contribute to this leaky pipeline are gender bias,
the tendency to treat individuals differently based on the person’s gender
identity, and homophily, the tendency of people to want to be around those
who are similar to themselves. Here, we present a multilayer network model
of gender representation in professional hierarchies that incorporates these
two factors. This model builds on previous work by Clifton et al. (2019), but
the multilayer network framework allows us to …


Innovations In Drop Shape Analysis Using Deep Learning And Solving The Young-Laplace Equation For An Axisymmetric Pendant Drop, Andres P. Hyer Jan 2023

Innovations In Drop Shape Analysis Using Deep Learning And Solving The Young-Laplace Equation For An Axisymmetric Pendant Drop, Andres P. Hyer

Theses and Dissertations

Axisymmetric Drop Shape Analysis (ADSA) is a technique commonly used to determine surface or interfacial tension. Applications of traditional ASDA methods to process analytical technologies are limited by computational speed and image quality. Here, we address these limitations using a novel machine learning approach to analysis. With a convolutional neural network (CNN), we were able to achieve an experimental fit precision of (+/-) 0.122 mN/m in predicting the surface tension of drop images at a rate of 1.5 ms^-1 versus 7.7 s^-1, which is more than 5,000 times faster than the traditional method. The results are validated on real images …


Dynamical Aspects In (4+1)-Body Problems, Ryan Gauthier Jan 2023

Dynamical Aspects In (4+1)-Body Problems, Ryan Gauthier

Theses and Dissertations (Comprehensive)

The n-body problem models a system of n-point masses that attract each other via some binary interaction. The (n + 1)-body problem assumes that one of the masses is located at the origin of the coordinate system. For example, an (n+1)-body problem is an ideal model for Saturn, seen as the central mass, and one of its outer rings. A relative equilibrium (RE) is a special solution of the (n+1)-body problem where the non-central bodies rotate rigidly about the centre of mass. In rotating coordinates, these solutions become equilibria.

In this thesis we study dynamical aspects of planar (4 + …