Open Access. Powered by Scholars. Published by Universities.®

Series

2017

Discipline
Institution
Keyword
Publication
File Type

Articles 1 - 7 of 7

Full-Text Articles in Ordinary Differential Equations and Applied Dynamics

Flow Anisotropy Due To Thread-Like Nanoparticle Agglomerations In Dilute Ferrofluids, Alexander Cali, Wah-Keat Lee, A. David Trubatch, Philip Yecko Dec 2017

Flow Anisotropy Due To Thread-Like Nanoparticle Agglomerations In Dilute Ferrofluids, Alexander Cali, Wah-Keat Lee, A. David Trubatch, Philip Yecko

Department of Applied Mathematics and Statistics Faculty Scholarship and Creative Works

Improved knowledge of the magnetic field dependent flow properties of nanoparticle-based magnetic fluids is critical to the design of biomedical applications, including drug delivery and cell sorting. To probe the rheology of ferrofluid on a sub-millimeter scale, we examine the paths of 550 μm diameter glass spheres falling due to gravity in dilute ferrofluid, imposing a uniform magnetic field at an angle with respect to the vertical. Visualization of the spheres’ trajectories is achieved using high resolution X-ray phase-contrast imaging, allowing measurement of a terminal velocity while simultaneously revealing the formation of an array of long thread-like accumulations of magnetic …


Differential Equations Of Dynamical Order, Andrei Ludu, Harihar Khanal Nov 2017

Differential Equations Of Dynamical Order, Andrei Ludu, Harihar Khanal

Publications

No abstract provided.


Analysis And Implementation Of Numerical Methods For Solving Ordinary Differential Equations, Muhammad Sohel Rana Oct 2017

Analysis And Implementation Of Numerical Methods For Solving Ordinary Differential Equations, Muhammad Sohel Rana

Masters Theses & Specialist Projects

Numerical methods to solve initial value problems of differential equations progressed quite a bit in the last century. We give a brief summary of how useful numerical methods are for ordinary differential equations of first and higher order. In this thesis both computational and theoretical discussion of the application of numerical methods on differential equations takes place. The thesis consists of an investigation of various categories of numerical methods for the solution of ordinary differential equations including the numerical solution of ordinary differential equations from a number of practical fields such as equations arising in population dynamics and astrophysics. It …


Generalized Thomas-Fermi Equations As The Lampariello Class Of Emden-Fowler Equations, Haret C. Rosu, S.C. Mancas Apr 2017

Generalized Thomas-Fermi Equations As The Lampariello Class Of Emden-Fowler Equations, Haret C. Rosu, S.C. Mancas

Publications

A one-parameter family of Emden-Fowler equations defined by Lampariello’s parameter p which, upon using Thomas-Fermi boundary conditions, turns into a set of generalized Thomas-Fermi equations comprising the standard Thomas-Fermi equation for p = 1 is studied in this paper. The entire family is shown to be non integrable by reduction to the corresponding Abel equations whose invariants do not satisfy a known integrability condition. We also discuss the equivalent dynamical system of equations for the standard Thomas-Fermi equation and perform its phase-plane analysis. The results of the latter analysis are similar for the whole class.


On The Three Dimensional Interaction Between Flexible Fibers And Fluid Flow, Bogdan Nita, Ryan Allaire Jan 2017

On The Three Dimensional Interaction Between Flexible Fibers And Fluid Flow, Bogdan Nita, Ryan Allaire

Department of Mathematics Facuty Scholarship and Creative Works

In this paper we discuss the deformation of a flexible fiber clamped to a spherical body and immersed in a flow of fluid moving with a speed ranging between 0 and 50 cm/s by means of three dimensional numerical simulation developed in COMSOL . The effects of flow speed and initial configuration angle of the fiber relative to the flow are analyzed. A rigorous analysis of the numerical procedure is performed and our code is benchmarked against well established cases. The flow velocity and pressure are used to compute drag forces upon the fiber. Of particular interest is the behavior …


Steady And Stable: Numerical Investigations Of Nonlinear Partial Differential Equations, R. Corban Harwood Jan 2017

Steady And Stable: Numerical Investigations Of Nonlinear Partial Differential Equations, R. Corban Harwood

Faculty Publications - Department of Mathematics

Excerpt: "Mathematics is a language which can describe patterns in everyday life as well as abstract concepts existing only in our minds. Patterns exist in data, functions, and sets constructed around a common theme, but the most tangible patterns are visual. Visual demonstrations can help undergraduate students connect to abstract concepts in advanced mathematical courses. The study of partial differential equations, in particular, benefits from numerical analysis and simulation."


Code For "Noise-Enhanced Coding In Phasic Neuron Spike Trains", Cheng Ly, Brent D. Doiron Jan 2017

Code For "Noise-Enhanced Coding In Phasic Neuron Spike Trains", Cheng Ly, Brent D. Doiron

Statistical Sciences and Operations Research Data

This zip file contains Matlab scripts and ode (XPP) files to calculate the statistics of the models in "Noise-Enhanced Coding in Phasic Neuron Spike Trains". This article is published in PLoS ONE.