Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Ordinary Differential Equations and Applied Dynamics

2n-Dimensional Canonical Systems And Applications, Andrei Ludu, Keshav Baj Acharya Jun 2020

2n-Dimensional Canonical Systems And Applications, Andrei Ludu, Keshav Baj Acharya

Publications

We study the 2N-dimensional canonical systems and discuss some properties of its fundamental solution. We then discuss the Floquet theory of periodic canonical systems and observe the asymptotic behavior of its solution. Some important physical applications of the systems are also discussed: linear stability of periodic Hamiltonian systems, position-dependent effective mass, pseudo-periodic nonlinear water waves, and Dirac systems.


Nonlocal Symmetries For Time-Dependent Order Differential Equations, Andrei Ludu Dec 2018

Nonlocal Symmetries For Time-Dependent Order Differential Equations, Andrei Ludu

Publications

A new type of ordinary differential equation is introduced and discussed: time-dependent order ordinary differential equations. These equations are solved via fractional calculus by transforming them into Volterra integral equations of second kind with singular integrable kernel. The solutions of the time-dependent order differential equation represent deformations of the solutions of the classical (integer order) differential equations, mapping them into one-another as limiting cases. This equation can also move, remove or generate singularities without involving variable coefficients. An interesting symmetry of the solution in relation to the Riemann zeta function and Harmonic numbers is observed.


Differential Equations Of Dynamical Order, Andrei Ludu, Harihar Khanal Nov 2017

Differential Equations Of Dynamical Order, Andrei Ludu, Harihar Khanal

Publications

No abstract provided.


Generalized Thomas-Fermi Equations As The Lampariello Class Of Emden-Fowler Equations, Haret C. Rosu, S.C. Mancas Apr 2017

Generalized Thomas-Fermi Equations As The Lampariello Class Of Emden-Fowler Equations, Haret C. Rosu, S.C. Mancas

Publications

A one-parameter family of Emden-Fowler equations defined by Lampariello’s parameter p which, upon using Thomas-Fermi boundary conditions, turns into a set of generalized Thomas-Fermi equations comprising the standard Thomas-Fermi equation for p = 1 is studied in this paper. The entire family is shown to be non integrable by reduction to the corresponding Abel equations whose invariants do not satisfy a known integrability condition. We also discuss the equivalent dynamical system of equations for the standard Thomas-Fermi equation and perform its phase-plane analysis. The results of the latter analysis are similar for the whole class.


Computational Models For Nanosecond Laser Ablation, Harihar Khanal, David Autrique, Vasilios Alexiades Jan 2014

Computational Models For Nanosecond Laser Ablation, Harihar Khanal, David Autrique, Vasilios Alexiades

Publications

Laser ablation in an ambient environment is becoming increasingly important in science and technology. It is used in applications ranging from chemical analysis via mass spectroscopy, to pulsed laser deposition and nanoparticle manufacturing. We describe numerical schemes for a multiphase hydrodynamic model of nanosecond laser ablation expressing energy, momentum, and mass conservation in the target material, as well as in the expanding plasma plume, along with collisional and radiative processes for laser-induced breakdown (plasma formation). Numerical simulations for copper in a helium background gas are presented and the efficiency of various ODE integrators is compared.


Models Of Phototransduction In Rod Photoreceptors, Harihar Khanal, Vasilios Alexiades Jan 2008

Models Of Phototransduction In Rod Photoreceptors, Harihar Khanal, Vasilios Alexiades

Publications

Phototransduction is the process by which photons of light generate an electrical response in retinal rod and cone photoreceptors, thereby initiating vision. We compare the electrical response in salamander rods from increasingly more (spacialy) detailed models of phototransduction: 0-dimensional (bulk), 1-dimensional (longitudinal), 2-dimensional (axisymmetric), and 3-dimensional (with incisures). We discuss issues of finding physical parameters for simulation and validation of models, and also present some computational experiments for rods with geometry of mouse and human photoreceptors.


Simulation Of Engineering Systems Described By High-Index Dae And Discontinuous Ode Using Single Step Methods, Marc Compere Aug 2001

Simulation Of Engineering Systems Described By High-Index Dae And Discontinuous Ode Using Single Step Methods, Marc Compere

Publications

This dissertation presents numerical methods for solving two classes of or-dinary diferential equations (ODE) based on single-step integration meth-ods. The first class of equations addressed describes the mechanical dynamics of constrained multibody systems. These equations are ordinary differential equations (ODE) subject to algebraic constraints. Accordinly they are called differential-algebraic equations (DAE).

Specific contributions made in this area include an explicit transforma-tion between the Hessenberg index-3 form for constrained mechanical systems to a canonical state-space form used in the nonlinear control communities. A hybrid solution method was developed that incorporates both sliding-mode control (SMC) from the controls literature and post-stabilization from …