Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Ordinary Differential Equations and Applied Dynamics

Mathematical Modeling, Analysis, And Simulation Of Patient Addiction Journey, Adan Baca, Diego Gonzalez, Alonso G. Ogueda, Holly C. Matto, Padmanabhan Seshaiyer Aug 2024

Mathematical Modeling, Analysis, And Simulation Of Patient Addiction Journey, Adan Baca, Diego Gonzalez, Alonso G. Ogueda, Holly C. Matto, Padmanabhan Seshaiyer

CODEE Journal

This paper aims to develop a mathematical model to study the dynamics of addiction as individuals go through their detox journey. The motivation for this work is three fold. First, there has been a significant increase in drug overdose and drug addiction following the COVID-19 pandemic, and addiction may be interpreted as a infectious disease. Secondly, the dynamics of infectious disease could be modeled via compartmental models described by differential equations and one can therefore leverage the existing analytical and numerical methods to model addiction as a disease. Finally, the work helps to inform how mathematical models governed by differential …


Modeling Virus Diffusion On Social Media Networks With The Smirq Model, Justin Browning, Arnav Mazumder, Gowri Nanda Jul 2024

Modeling Virus Diffusion On Social Media Networks With The Smirq Model, Justin Browning, Arnav Mazumder, Gowri Nanda

Rose-Hulman Undergraduate Mathematics Journal

As social networking services become more complex and widespread, users become increasingly susceptible to becoming infected with malware and risk their data being compromised. In the United States, it costs the government billions of dollars annually to handle malware attacks. Additionally, computer viruses can be spread through schools, businesses, and individuals’ personal devices and accounts. Malware affecting larger groups of people causes problems with privacy, personal files, and financial security. Thus, we developed the probabilistic SMIRQ (pSMIRQ) model that shows how a virus spreads through a generated network as a way to track and prevent future viruses. Our model is …


Numerical Issues For A Non-Autonomous Logistic Model, Marina Mancuso, Kaitlyn M. Martinez, Carrie Manore, Fabio Milner Jun 2024

Numerical Issues For A Non-Autonomous Logistic Model, Marina Mancuso, Kaitlyn M. Martinez, Carrie Manore, Fabio Milner

CODEE Journal

The user-friendly aspects of standardized, built-in numerical solvers in
computational software aid in the simulations of many problems solved using
differential equations. The tendency to trust output from built-in numerical
solvers may stem from their ease-of-use or the user’s unfamiliarity with the
inner workings of the numerical methods. Here, we show a case where the
most frequently used and trusted built-in numerical methods in Python’s
SciPy library produce incorrect, inconsistent, and even unstable approxima-
tions for a the non-autonomous logistic equation, which is used to model
biological phenomena across a variety of disciplines. Some of the most com-
monly used …


Deterministic Global 3d Fractal Cloud Model For Synthetic Scene Generation, Aaron M. Schinder, Shannon R. Young, Bryan J. Steward, Michael L. Dexter, Andrew Kondrath, Stephen Hinton, Ricardo Davila May 2024

Deterministic Global 3d Fractal Cloud Model For Synthetic Scene Generation, Aaron M. Schinder, Shannon R. Young, Bryan J. Steward, Michael L. Dexter, Andrew Kondrath, Stephen Hinton, Ricardo Davila

Faculty Publications

This paper describes the creation of a fast, deterministic, 3D fractal cloud renderer for the AFIT Sensor and Scene Emulation Tool (ASSET). The renderer generates 3D clouds by ray marching through a volume and sampling the level-set of a fractal function. The fractal function is distorted by a displacement map, which is generated using horizontal wind data from a Global Forecast System (GFS) weather file. The vertical windspeed and relative humidity are used to mask the creation of clouds to match realistic large-scale weather patterns over the Earth. Small-scale detail is provided by the fractal functions which are tuned to …


Mathematical Modeling For Dental Decay Prevention In Children And Adolescents, Mahdiyeh Soltaninejad Apr 2024

Mathematical Modeling For Dental Decay Prevention In Children And Adolescents, Mahdiyeh Soltaninejad

Dissertations

The high prevalence of dental caries among children and adolescents, especially those from lower socio-economic backgrounds, is a significant nationwide health concern. Early prevention, such as dental sealants and fluoride varnish (FV), is essential, but access to this care remains limited and disparate. In this research, a national dataset is utilized to assess sealants' reach and effectiveness in preventing tooth decay, particularly focusing on 2nd molars that emerge during early adolescence, a current gap in the knowledge base. FV is recommended to be delivered during medical well-child visits to children who are not seeing a dentist. Challenges and facilitators in …


Fitting A Covid-19 Model Incorporating Senses Of Safety And Caution To Local Data From Spartanburg County, South Carolina, D. Chloe Griffin, Amanda Mangum Jan 2024

Fitting A Covid-19 Model Incorporating Senses Of Safety And Caution To Local Data From Spartanburg County, South Carolina, D. Chloe Griffin, Amanda Mangum

CODEE Journal

Common mechanistic models include Susceptible-Infected-Removed (SIR) and Susceptible-Exposed-Infected-Removed (SEIR) models. These models in their basic forms have generally failed to capture the nature of the COVID-19 pandemic's multiple waves and do not take into account public policies such as social distancing, mask mandates, and the ``Stay-at-Home'' orders implemented in early 2020. While the Susceptible-Vaccinated-Infected-Recovered-Deceased (SVIRD) model only adds two more compartments to the SIR model, the inclusion of time-dependent parameters allows for the model to better capture the first two waves of the COVID-19 pandemic when surveillance testing was common practice for a large portion of the population. We find …


Modeling Aircraft Takeoffs, Catherine Cavagnaro Jan 2024

Modeling Aircraft Takeoffs, Catherine Cavagnaro

CODEE Journal

Real-world applications can demonstrate how mathematical models describe and provide insight into familiar physical systems. In this paper, we apply techniques from a first-semester differential equations course that shed light on a problem from aviation. In particular, we construct several differential equations that model the distance that an aircraft requires to become airborne. A popular thumb rule that pilots have used for decades appears to emanate from one of these models. We will see that this rule does not follow from a representative model and suggest a better method of ensuring safety during takeoff. Aircraft safety is definitely a matter …


Advanced Techniques In Time Series Forecasting: From Deterministic Models To Deep Learning, Xue Bai Jan 2024

Advanced Techniques In Time Series Forecasting: From Deterministic Models To Deep Learning, Xue Bai

Graduate Theses, Dissertations, and Problem Reports

This dissertation discusses three instances of temporal prediction, applied to population dynamics and deep learning.

In population modeling, dynamic processes are frequently represented by systems of differential equations, allowing for the analysis of various phenomena. The first application explores modeling cloned hematopoiesis in chronic myeloid leukemia (CML) via a nonlinear system of differential equations. By tracking the evolution of different cell compartments, including cycling and quiescent stem cells, progenitor cells, differentiated cells, and terminally differentiated cells, the model captures the transition from normal hematopoiesis to the chronic and accelerated-acute phases of CML. Three distinct non-zero steady states are identified, representing …


Multiscale Modelling Of Brain Networks And The Analysis Of Dynamic Processes In Neurodegenerative Disorders, Hina Shaheen Jan 2024

Multiscale Modelling Of Brain Networks And The Analysis Of Dynamic Processes In Neurodegenerative Disorders, Hina Shaheen

Theses and Dissertations (Comprehensive)

The complex nature of the human brain, with its intricate organic structure and multiscale spatio-temporal characteristics ranging from synapses to the entire brain, presents a major obstacle in brain modelling. Capturing this complexity poses a significant challenge for researchers. The complex interplay of coupled multiphysics and biochemical activities within this intricate system shapes the brain's capacity, functioning within a structure-function relationship that necessitates a specific mathematical framework. Advanced mathematical modelling approaches that incorporate the coupling of brain networks and the analysis of dynamic processes are essential for advancing therapeutic strategies aimed at treating neurodegenerative diseases (NDDs), which afflict millions of …