Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Ordinary Differential Equations and Applied Dynamics

On The Spatial Modelling Of Biological Invasions, Tedi Ramaj Dec 2022

On The Spatial Modelling Of Biological Invasions, Tedi Ramaj

Electronic Thesis and Dissertation Repository

We investigate problems of biological spatial invasion through the use of spatial modelling. We begin by examining the spread of an invasive weed plant species through a forest by developing a system of partial differential equations (PDEs) involving an invasive weed and a competing native plant species. We find that extinction of the native plant species may be achieved by increasing the carrying capacity of the forest as well as the competition coefficient between the species. We also find that the boundary conditions exert long-term control on the biomass of the invasive weed and hence should be considered when implementing …


Coevolution Of Hosts And Pathogens In The Presence Of Multiple Types Of Hosts, Evan J. Mitchell Aug 2021

Coevolution Of Hosts And Pathogens In The Presence Of Multiple Types Of Hosts, Evan J. Mitchell

Electronic Thesis and Dissertation Repository

How will hosts and pathogens coevolve in response to multiple types of hosts? I study this question from three different perspectives. First, I model a scenario in which hosts are categorized as female or male. Hosts invest resources in maintaining their immune system at a cost to their reproductive success, while pathogens face a trade-off between transmission and duration of infection. Importantly, female hosts are also able to vertically transmit an infection to their newborn offspring. The main result is that as the rate of vertical transmission increases, female hosts will have a greater incentive to pay the cost to …


Population And Evolution Dynamics In Predator-Prey Systems With Anti-Predation Responses, Yang Wang Apr 2021

Population And Evolution Dynamics In Predator-Prey Systems With Anti-Predation Responses, Yang Wang

Electronic Thesis and Dissertation Repository

This thesis studies the impact of anti-predation strategy on the population dynamics of predator-prey interactions. This work includes three research projects.

In the first project, we study a system of delay differential equations by considering both benefit and cost of anti-predation response, as well as a time delay in the transfer of biomass from the prey to the predator after predation. We reveal some insights on how the anti-predation response level and the biomass transfer delay jointly affect the population dynamics; we also show how the nonlinearity in the predation term mediated by the fear effect affects the long term …


Mathematical Modelling Of Prophage Dynamics, Tyler Pattenden Aug 2020

Mathematical Modelling Of Prophage Dynamics, Tyler Pattenden

Electronic Thesis and Dissertation Repository

We use mathematical models to study prophages, viral genetic sequences carried by bacterial genomes. In this work, we first examine the role that plasmid prophage play in the survival of de novo beneficial mutations for the associated temperate bacteriophage. Through the use of a life-history model, we determine that mutations first occurring in a plasmid prophage are far more likely to survive drift than those first occurring in a free phage. We then analyse the equilibria and stability of a system of ordinary differential equations that describe temperate phage-host dynamics. We elucidate conditions on dimensionless parameters to determine a parameter …


Phage-Bacteria Interaction And Prophage Sequences In Bacterial Genomes, Amjad Khan Feb 2020

Phage-Bacteria Interaction And Prophage Sequences In Bacterial Genomes, Amjad Khan

Electronic Thesis and Dissertation Repository

In this investigation, we examined the interaction of phages and bacteria in bacterial biofilm colonies, the evolution of prophages (viral genetic material inserted into the bacterial genome) and their genetic repertoire. To study the synergistic effects of lytic phages and antibiotics on bacterial biofilm colonies, we have developed a mathematical model of ordinary differential equations (ODEs). We have also presented a mathematical model consisting of a partial differential equation (PDEs), to study evolutionary forces acting on prophages. We fitted the PDE model to three publicly available databases and were able to show that induction is the prominent fate of intact …


Modelling Non-Linear Functional Responses In Competitive Biological Systems., Nickolas Goncharenko Mar 2019

Modelling Non-Linear Functional Responses In Competitive Biological Systems., Nickolas Goncharenko

Western Research Forum

One of the most versatile and well understood models in mathematical biology is the Competitive Lotka Volterra (CLV) model, which describes the behaviour of any number of exclusively competitive species (that is each species competes directly with every other species). Despite it's success in describing many phenomenon in biology, chemistry and physics the CLV model cannot describe any non-linear environmental effects (including resource limitation and immune response of a host due to infection). The reason for this is the theory monotone dynamical systems, which was codeveloped with the CLV model, does not apply when this non-linear effect is introduced. For …


Modelling Walleye Population And Its Cannibalism Effect, Quan Zhou Aug 2017

Modelling Walleye Population And Its Cannibalism Effect, Quan Zhou

Electronic Thesis and Dissertation Repository

Walleye is a very common recreational fish in Canada with a strong cannibalism tendency, such that walleyes with larger sizes will consume their smaller counterparts when food sources are limited or a surplus of adults is present. Cannibalism may be a factor promoting population oscillation. As fish reach a certain age or biological stage (i.e. biological maturity), the number of fish achieving that stage is known as fish recruitment. The objective of this thesis is to model the walleye population with its recruitment and cannibalism effect. A matrix population model has been introduced to characterize the walleye population into three …


On Honey Bee Colony Dynamics And Disease Transmission, Matthew I. Betti Aug 2017

On Honey Bee Colony Dynamics And Disease Transmission, Matthew I. Betti

Electronic Thesis and Dissertation Repository

The work herein falls under the umbrella of mathematical modeling of disease transmission. The majority of this document focuses on the extent to which infection undermines the strength of a honey bee colony. These studies extend from simple mass-action ordinary differential equations models, to continuous age-structured partial differential equation models and finally a detailed agent-based model which accounts for vector transmission of infection between bees as well as a host of other influences and stressors on honey bee colony dynamics. These models offer a series of predictions relevant to the fate of honey bee colonies in the presence of disease …


Understanding Recurrent Disease: A Dynamical Systems Approach, Wenjing Zhang Aug 2014

Understanding Recurrent Disease: A Dynamical Systems Approach, Wenjing Zhang

Electronic Thesis and Dissertation Repository

Recurrent disease, characterized by repeated alternations between acute relapse and long re- mission, can be a feature of both common diseases, like ear infections, and serious chronic diseases, such as HIV infection or multiple sclerosis. Due to their poorly understood etiology and the resultant challenge for medical treatment and patient management, recurrent diseases attract much attention in clinical research and biomathematics. Previous studies of recurrence by biomathematicians mainly focus on in-host models and generate recurrent patterns by in- corporating forcing functions or stochastic elements. In this study, we investigate deterministic in-host models through the qualitative analysis of dynamical systems, to …


Study Of Virus Dynamics By Mathematical Models, Xiulan Lai Apr 2014

Study Of Virus Dynamics By Mathematical Models, Xiulan Lai

Electronic Thesis and Dissertation Repository

This thesis studies virus dynamics within host by mathematical models, and topics discussed include viral release strategies, viral spreading mechanism, and interaction of virus with the immune system.

Firstly, we propose a delay differential equation model with distributed delay to investigate the evolutionary competition between budding and lytic viral release strategies. We find that when antibody is not established, the dynamics of competition depends on the respective basic reproduction numbers of the two viruses. If the basic reproductive ratio of budding virus is greater than that of lytic virus and one, budding virus can survive. When antibody is established for …


Modeling Leafhopper Populations And Their Role In Transmitting Plant Diseases., Ji Ruan Aug 2013

Modeling Leafhopper Populations And Their Role In Transmitting Plant Diseases., Ji Ruan

Electronic Thesis and Dissertation Repository

This M.Sc. thesis focuses on the interactions between crops and leafhoppers.

Firstly, a general delay differential equations system is proposed, based on the infection age structure, to investigate disease dynamics when disease latencies are considered. To further the understanding on the subject, a specific model is then introduced. The basic reproduction numbers $\cR_0$ and $\cR_1$ are identified and their threshold properties are discussed. When $\cR_0 < 1$, the insect-free equilibrium is globally asymptotically stable. When $\cR_0 > 1$ and $\cR_1 < 1$, the disease-free equilibrium exists and is locally asymptotically stable. When $\cR_1>1$, the disease will persist.

Secondly, we derive another general delay differential equations system to examine how different life stages of leafhoppers affect crops. The basic reproduction numbers $\cR_0$ is determined: when …