Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Ordinary Differential Equations and Applied Dynamics

Scaling Group Analysis On Mhd Free Convective Heat And Mass Transfer Over A Stretching Surface With Suction / Injection, Heat Source/Sink Considering Viscous Dissipation And Chemical Reaction Effects, Hunegnaw Dessie, Naikoti Kishan Dec 2014

Scaling Group Analysis On Mhd Free Convective Heat And Mass Transfer Over A Stretching Surface With Suction / Injection, Heat Source/Sink Considering Viscous Dissipation And Chemical Reaction Effects, Hunegnaw Dessie, Naikoti Kishan

Applications and Applied Mathematics: An International Journal (AAM)

This paper concerns with scaling group analysis on MHD free convective heat and mass transfer over stretching surface considering effects of thermal-diffusion and diffusion-thermo with suction /injection, heat source/sink and chemical reaction by taking into account viscous dissipation. Scaling group transformations are used to convert the partial differential equations of governing equations into ordinary differential equation and are solved numerically by Keller Box Method. Numerical results obtained for different parameters are drawn graphically and their effects on velocity, temperature and concentration profiles are discussed and shown graphically. Skin-friction coefficient, Nusselt number and Sherwood number are presented in table. It is …


Modelling The Flow Of Aqueous Humor In Schlemm’S Canal In The Eye, Ram Avtar, Swati Srivastava, Rashmi Srivastava Jun 2014

Modelling The Flow Of Aqueous Humor In Schlemm’S Canal In The Eye, Ram Avtar, Swati Srivastava, Rashmi Srivastava

Applications and Applied Mathematics: An International Journal (AAM)

A simple mathematical model for the transient flow of aqueous humor in the canal of Schlemm is developed to investigate the acceleration effects of a sudden elevation in the intraocular pressure on the flow characteristics of the aqueous humor in the canal. The model treats a canal segment as a tube of elliptic cross-section. Exact analytical solution to the model is obtained using separation of variables method. The effects of some important model parameters on the maximum and minimum shear stresses exerted on the Schlemm’s canal epithelial cells (wall) by flowing aqueous humor are investigated for the steady-state flow.


Smarticles: A Method For Identifying And Correcting Instability And Error Caused By Explicit Integration Techniques In Physically Based Simulations, Susan Aileen Marano Jun 2014

Smarticles: A Method For Identifying And Correcting Instability And Error Caused By Explicit Integration Techniques In Physically Based Simulations, Susan Aileen Marano

Master's Theses

Using an explicit integration method in physically based animations has many advantages including conceptual and computational simplicity, however, it re- quires small time steps to ensure low numerical instability. Simulations with large numbers of individually interacting components such as cloth, hair, and fluid models, are limited by the sections of particles most susceptible to error. This results in the need for smaller time steps than required for the majority of the system. These sections can be diverse and dynamic, quickly changing in size and location based on forces in the system. Identifying and handling these trou- blesome sections could allow …


Termodynamika Procesowa I Techniczna Lab., Wojciech M. Budzianowski Jan 2014

Termodynamika Procesowa I Techniczna Lab., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Tematyka Prac Dyplomowych Dla Studentów Wydziału Mechaniczno-Energetycznego Pwr., Wojciech M. Budzianowski Jan 2014

Tematyka Prac Dyplomowych Dla Studentów Wydziału Mechaniczno-Energetycznego Pwr., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Tematyka Prac Dyplomowych Dla Studentów Wydziału Chemicznego Pwr., Wojciech M. Budzianowski Jan 2014

Tematyka Prac Dyplomowych Dla Studentów Wydziału Chemicznego Pwr., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Mechanika Płynów Lab., Wojciech M. Budzianowski Jan 2014

Mechanika Płynów Lab., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.