Open Access. Powered by Scholars. Published by Universities.®

PDF

Rose-Hulman Undergraduate Mathematics Journal

Numerical Analysis

Articles 1 - 3 of 3

Full-Text Articles in Numerical Analysis and Computation

Numerical Analysis Of A Model For The Growth Of Microorganisms, Alexander Craig Montgomery, Braden J. Carlson May 2022

Numerical Analysis Of A Model For The Growth Of Microorganisms, Alexander Craig Montgomery, Braden J. Carlson

Rose-Hulman Undergraduate Mathematics Journal

A system of first-order differential equations that arises in a model for the growth of microorganisms in a chemostat with Monod kinetics is studied. A new, semi-implicit numerical scheme is proposed to approximate solutions to the system. It is shown that the scheme is uniquely solvable and unconditionally stable, and further properties of the scheme are analyzed. The convergence rate of the numerical solution to the true solution of the system is given, and it is shown convergence of the numerical solutions to the true solutions is uniform over any interval [0, T ] for T > 0.


On The Consistency Of Alternative Finite Difference Schemes For The Heat Equation, Tran April Apr 2022

On The Consistency Of Alternative Finite Difference Schemes For The Heat Equation, Tran April

Rose-Hulman Undergraduate Mathematics Journal

While the well-researched Finite Difference Method (FDM) discretizes every independent variable into algebraic equations, Method of Lines discretizes all but one dimension, leaving an Ordinary Differential Equation (ODE) in the remaining dimension. That way, ODE's numerical methods can be applied to solve Partial Differential Equations (PDEs). In this project, Linear Multistep Methods and Method of Lines are used to numerically solve the heat equation. Specifically, the explicit Adams-Bashforth method and the implicit Backward Differentiation Formulas are implemented as Alternative Finite Difference Schemes. We also examine the consistency of these schemes.


Numerical Integration Through Concavity Analysis, Daniel J. Pietz Jan 2021

Numerical Integration Through Concavity Analysis, Daniel J. Pietz

Rose-Hulman Undergraduate Mathematics Journal

We introduce a relationship between the concavity of a C2 func- tion and the area bounded by its graph and secant line. We utilize this relationship to develop a method of numerical integration. We then bound the error of the approximation, and compare to known methods, finding an improvement in error bound over methods of comparable computational complexity.