Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Numerical Analysis and Computation

Numerical Reconstruction Of Spalled Particle Trajectories In An Arc-Jet Environment, Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin Jan 2021

Numerical Reconstruction Of Spalled Particle Trajectories In An Arc-Jet Environment, Raghava S. C. Davuluri, Sean C. C. Bailey, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

To evaluate the effects of spallation on ablative material, it is necessary to evaluate the mass loss. To do so, a Lagrangian particle trajectory code is used to reconstruct trajectories that match the experimental data for all kinematic parameters. The results from spallation experiments conducted at the NASA HYMETS facility over a wedge sample were used. A data-driven adaptive methodology was used to adapts the ejection parameters until the numerical trajectory matches the experimental data. The preliminary reconstruction results show that the size of the particles seemed to be correlated with the location of the ejection event. The size of …


Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin Jan 2016

Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin

Mechanical Engineering Faculty Publications

Two-way coupling is performed between a spallation code and a hypersonic aerothermodynamics CFD solver to evaluate the effect of spalled particles on the flow field. Time accurate solutions are computed in argon and air flow fields. A single particle simulations and multiple particles simulations are performed and studied. The results show that the carbon vapor released by spalled particles tend to change the composition of the flow field, particularly the upstream region of the shock.


Computational Fluid Dynamics (Cfd) Modeling Of A Laboratory Scale Coal Gasifier, Kiel S. Schultheiss Jan 2013

Computational Fluid Dynamics (Cfd) Modeling Of A Laboratory Scale Coal Gasifier, Kiel S. Schultheiss

Electronic Theses and Dissertations

Furthering gasification technology is an essential part of advancing clean coal technologies. In order to seek insight into the appropriate operations for the formation of synthetic gas (syngas) a numerical simulation was performed to predict the phenomena of coal gasification in a laboratory scale entrained-flow coal gasifier. The mesh for the model was developed with ICEM CFD software and the chemical and physical phenomena were modeled using the fluid flow solver ANSYS FLUENT. Mesh independence was verified. The model was validated with experimental data from several studies performed on a laboratory scale gasifier.

Systematic examination of the model was performed …