Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 61 - 74 of 74

Full-Text Articles in Physical Sciences and Mathematics

High-Efficiency Nitrite Sensor Based On Cop Nanowire Array, Fu-Ling Zhou, Xiao-Li Xiong, Xu-Ping Sun Apr 2019

High-Efficiency Nitrite Sensor Based On Cop Nanowire Array, Fu-Ling Zhou, Xiao-Li Xiong, Xu-Ping Sun

Journal of Electrochemistry

Nitrite has a negative impact on the environment and human health. The long-term consumption of nitrite-containing foods has a carcinogenic risk. Therefore, the analysis and detection of nitrite are important. It is of great significance to develop high-efficiency electrocatalysts to achieve high sensitivity and selectivity for nitrite detection. The cobalt phosphide nano-array (CoP/TM) was obtained by hydrothermal and low-temperature phosphating. The electrochemical test results show that the constructed CoP/TM was a highly efficient electrochemical reduction nitrite catalyst with the excellent sensing performance and response time less than 3 s, as well as the linear detection range of 1.0 μmol·L-1 …


Sensitive Photoelectrochemical Assay Of Nucleic Acids Based On Catalytic Hairpin Assembly And Ru(Nh3)63+, Ya-Min Fu, Xiao-Xia Yan, Xiao-Hua Zhang, Jin-Hua Chen Apr 2019

Sensitive Photoelectrochemical Assay Of Nucleic Acids Based On Catalytic Hairpin Assembly And Ru(Nh3)63+, Ya-Min Fu, Xiao-Xia Yan, Xiao-Hua Zhang, Jin-Hua Chen

Journal of Electrochemistry

A simple “signal-on” photoelectrochemical (PEC) sensing platform for sensitive assay of nucleic acids was developed by coupling catalytic hairpin assembly (CHA) signal amplification strategy with Ru(NH3)63+. Herein, cadmium sulfide (CdS) was deposited on the TiO2/indium tin oxide (ITO) electrode by a method of successive ionic layer adsorption and reaction (SILAR), serving as one kind of photoelectric material to broaden absorption range of TiO2 and to improve the photoelectric conversion efficiency. Thereafter, the capture DNA (C-DNA) was immobilized on the CdS/TiO2/ITO electrode. Simultaneously, Au-hairpin DNA probe 1 (Au-HP1) and hairpin DNA …


Preparation And Capacitive Property Of Two-Dimensional Multilayer Ti3C2TX-Mxene/Ppy-Nw Composite Material, Lu Chen, Xuan Jian, Min He, Mi-Mi Zhang, Xiao-Die Chen, Lou-Jun Gao, Zhen-Hai Liang Apr 2019

Preparation And Capacitive Property Of Two-Dimensional Multilayer Ti3C2TX-Mxene/Ppy-Nw Composite Material, Lu Chen, Xuan Jian, Min He, Mi-Mi Zhang, Xiao-Die Chen, Lou-Jun Gao, Zhen-Hai Liang

Journal of Electrochemistry

In this paper, the two-dimensional multilayered Ti3C2Tx-MXene was obtained by hydrofluoric acid etching method on the bulk phase material MAX(Ti3AlC2) substrate. The two-dimensional multilayered Ti3C2Tx-MXene/PPy-NW composite electrode materials were successfully prepared by combining the one-dimensional polypyrrole nanowires (PPy-NW) with two-dimensional multilayered Ti3C2Tx-MXene. The morphologies and compositions of the synthetic materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Electrochemical tests showed that Ti3C2 …


Recent Progress In Vanadium-Based Electrode Materials, Meng-Lei Sun, Da-Qi Zhang, Jin-Kui Feng, Jiang-Feng Ni Feb 2019

Recent Progress In Vanadium-Based Electrode Materials, Meng-Lei Sun, Da-Qi Zhang, Jin-Kui Feng, Jiang-Feng Ni

Journal of Electrochemistry

It is an important solution to solve energy storage problems by developing inexpensive and safe lithium-ion and sodium-ion batteries with superior performance. Vanadium-based electrode materials are promising electrode materials because of diversified chemical valences, open structures and high theoretical capacities. In the past few years, vanadium-based electrode materials such as oxides, sulfides, and phosphates have achieved a considerable development in the battery field, It is, therefore, necessary to summarize their recent research progress. In this review, we particularly highlight the key challenges that are facing in the application of vanadium materials, such as low ion diffusion coefficient and poor structural …


Recent Progress In Key Materials For Room-Temperature Sodium-Ion Batteries, Fan-Fan Wang, Xiao-Bin Liu, Long Chen, Cheng-Cheng Chen, Yong-Chang Liu, Li-Zhen Fan Feb 2019

Recent Progress In Key Materials For Room-Temperature Sodium-Ion Batteries, Fan-Fan Wang, Xiao-Bin Liu, Long Chen, Cheng-Cheng Chen, Yong-Chang Liu, Li-Zhen Fan

Journal of Electrochemistry

Sodium-ion batteries (SIBs) have attracted tremendous attention in large-scale energy storage applications due to their resource advantages. However, Na+ is larger and heavier than Li+, which will limit its reversible reaction with the electrode materials and result in poor electrochemical performance. Thus, developing stable and high-efficiency electrode materials is the key to promoting the practical application of SIBs. Furthermore, the optimization of electrolyte is essential for the construction of high-safety and long-lifespan SIBs. In this review, we mainly summarize the recent advancements of electrode materials and electrolytes for room-temperature SIBs and discuss their challenges and possible resolution strategies. We hope …


Synthesis Of Flower-Like Vanadium Disulfide For Lithium Storage Application, Pan Li, Jian Liu, Wei-Yi Sun, Hai-Xia Li, Zhan-Liang Tao Feb 2019

Synthesis Of Flower-Like Vanadium Disulfide For Lithium Storage Application, Pan Li, Jian Liu, Wei-Yi Sun, Hai-Xia Li, Zhan-Liang Tao

Journal of Electrochemistry

In order to improve the electrochemical properties of vanadium disulfide (VS2) as an electrode material in Li-ion battery, the flower-like VS2 was prepared by a one-step hydrothermal method with the addition of polyethylene glycol 400. The phase and morphology of the product were characterized by using X-ray diffraction and field emission scanning electron microscopy. During the growth process, it was observed that the flower-like VS2 was interspersed with several hexagonal vanadium disulfide nanosheets, which had a high specific surface area and excellent structural stability. The flower-like VS2 was used for the cathode material test in …


Ni/Mn3O4/Nimn2O4 Double-Shelled Hollow Spheres Embedded Into Reduced Graphene Oxide As Advanced Anodes For Sodium-Ion Batteries, Chong Yan, Hua-Ri Kou, Bo Yan, Xiao-Jing Liu, De-Jun Li, Xi-Fei Li Feb 2019

Ni/Mn3O4/Nimn2O4 Double-Shelled Hollow Spheres Embedded Into Reduced Graphene Oxide As Advanced Anodes For Sodium-Ion Batteries, Chong Yan, Hua-Ri Kou, Bo Yan, Xiao-Jing Liu, De-Jun Li, Xi-Fei Li

Journal of Electrochemistry

Delicately building the unique nanocomposite with the combination of hollow structure and reduced graphene oxide (rGO) is highly desirable and still remains a great challenge in the field of energy conversion and storage. In this work, Ni/Mn3O4/NiMn2O4 double-shelled hollow spheres coated by rGO (denoted as R-NMN) have been successfully synthetized via one-step rapid solvothermal treatment followed by subsequent annealing for the first time. Served as anodes for sodium ion batteries (SIBs), the R-NMN composite containing 25wt% rGO exhibits a high discharge capacity of 187.8 mAh·g-1 after 100 cycles at 50 mA·g-1 …


Current Status And Prospect Of Battery Configuration In Li-S System, Jia-Hang Chen, Hui-Jun Yang, Cheng Guo, Jiu-Lin Wang Feb 2019

Current Status And Prospect Of Battery Configuration In Li-S System, Jia-Hang Chen, Hui-Jun Yang, Cheng Guo, Jiu-Lin Wang

Journal of Electrochemistry

Commercial lithium-ion batteries (LIBs) are incapable of satisfying the increasing demand for emerging electronic devices due to their limited energy density. Among the next-generation batteries, lithium-sulfur (Li-S) batteries are becoming a promising energy-storage system due to their high theoretical energy density and natural abundance of sulfur. However, the shuttle of soluble polysulfide intermediates between two electrodes, as well as the problem on Li metal anode,lower the utilization of active material and lead to the loss of specific capacity and rapid capacity fading. All the above challenges limit the further application of Li-S batteries. Recently, various novel battery configurations have been …


Applications Of Advanced Imaging Technologies For Critical Issues Of All-Solid-State Lithium Battery Studies, Yi-Bo Zhao, Hui-Hui Liu, Song-Liang Chen, Shou-Hang Bo Feb 2019

Applications Of Advanced Imaging Technologies For Critical Issues Of All-Solid-State Lithium Battery Studies, Yi-Bo Zhao, Hui-Hui Liu, Song-Liang Chen, Shou-Hang Bo

Journal of Electrochemistry

All-solid-state lithium batteries have attracted much attention for their high energy density and good safety. To increase their efficiency and prolong their service life, it is necessary to achieve high ion conductivity at the electrode/electrolyte interface and in the electrolyte, as well as to eliminate dendrites growth in the battery. Based on the critical requirements outlined above, this paper discusses the applications of advanced imaging technologies in relevant studies. Recent progresses in investigations of all-solid-state lithium batteries by imaging techniques including electron microscopy, scanning probe microscopy, X-ray tomography, magnetic resonance imaging and optical microscopy are summarized.


Recent Progress On Tio2-Based Anode Materials For Sodium-Ion Batteries, Si-Tian Lian, Jian-Shuai Lv, Qiang Yu, Guang-Wu Hu, Zhuo Chen, Liang Zhou, Li-Qiang Mai Feb 2019

Recent Progress On Tio2-Based Anode Materials For Sodium-Ion Batteries, Si-Tian Lian, Jian-Shuai Lv, Qiang Yu, Guang-Wu Hu, Zhuo Chen, Liang Zhou, Li-Qiang Mai

Journal of Electrochemistry

Titanium dioxide (TiO2) represents a stable, low-cost, and nontoxic anode material for sodium-ion batteries (SIBs). However, the low electrical conductivity limits its electrochemical activity (specific capacity) and rate capability, hindering its widespread applications. In this article, we show that different crystal forms of TiO2 have different pore structures, resulting in the distinct sodium storage capacities. Accordingly, the article introduces how TiO2 microstructures influence sodium storage. The nanoparticle structure can improve the rate performance of the material due to its short ion diffusion distance, and the internal cavity of the hollow structure is beneficial to cycle stability. …


A Comparative Study Of Pre-Lithiated Hard Carbon And Soft Carbon As Anodes For Lithium-Ion Capacitors, Zhao Li, Xian-Zhong Sun, Wen-Jie Liu, Xiong Zhang, Kai Wang, Yan-Wei Ma Feb 2019

A Comparative Study Of Pre-Lithiated Hard Carbon And Soft Carbon As Anodes For Lithium-Ion Capacitors, Zhao Li, Xian-Zhong Sun, Wen-Jie Liu, Xiong Zhang, Kai Wang, Yan-Wei Ma

Journal of Electrochemistry

Lithium-ion capacitor (LIC) has emerged to be one of the most promising electrochemical energy storage devices. Presently, activated carbon (AC) is the mostly used cathode material for LIC. Nevertheless, various carbonaceous materials can be used as anode materials, such as hard carbon (HC) and soft carbon (SC). Therefore, HC and SC with different structural and electrochemical characteristics have been investigated as the anode materials of LICs in this work. Compared with the HC electrode, the SC electrode showed higher electronic conductivity and reversible capacity. The rate capabilities of the two carbonaceous materials as a function of coating thickness have been …


Recent Developments In Surface/Interface Modulation And Structure-Performance Relationship Of Cathode Catalysts For Li-Air Batteries, Rui Gao, Jun-Kai Wang, Zhong-Bo Hu, Xiang-Feng Liu Feb 2019

Recent Developments In Surface/Interface Modulation And Structure-Performance Relationship Of Cathode Catalysts For Li-Air Batteries, Rui Gao, Jun-Kai Wang, Zhong-Bo Hu, Xiang-Feng Liu

Journal of Electrochemistry

Lithium-air battery has been considered to be one of the most promising secondary battery systems because of its high energy density. However, the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on the cathode, and the high overpotential, poor cycle stability and low rate capacity have severely blocked the development and application of Li-air battery. One of the effective strategies to alleviate these issues is to develop cathode catalysts for Li-air batteries. The design and development of bifunctional cathode catalysts with high activity and efficiency on both ORR and OER is highly desired for Li-air …


Cvd Preparation And Application Of 3d Graphene In Electrochemical Energy Storage, Yong-Kang Xia, Ming-Yuan Gu, Hong-Guan Yang, Xin-Zhi Yu, Bing-An Lu Feb 2019

Cvd Preparation And Application Of 3d Graphene In Electrochemical Energy Storage, Yong-Kang Xia, Ming-Yuan Gu, Hong-Guan Yang, Xin-Zhi Yu, Bing-An Lu

Journal of Electrochemistry

Three-dimensional (3D) graphene combinations with the excellent intrinsic properties of graphene and the 3D micro/nano porous structures provide a graphene foam with high specific surface area, excellent mechanical strength and fast electron and mass transports. The 3D graphene foam and its composite nanomaterials are widely used in the fields of nano-electronics, energy storage, chemical and biological sensing. The 3D graphene foam prepared by chemical vapor deposition (CVD) method is of high purity and crystallinity. In this review, a brief overview in the CVD preparations of 3D graphene and properties of CVD prepared 3D graphene based nanomaterials in electrochemical energy storage …


Preface On Special Issue Of Next-Generation Secondary Batteries, Zhen Zhou, Quan-Feng Dong Feb 2019

Preface On Special Issue Of Next-Generation Secondary Batteries, Zhen Zhou, Quan-Feng Dong

Journal of Electrochemistry

No abstract provided.