Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 74

Full-Text Articles in Physical Sciences and Mathematics

Regulation Of Copper Surface Via Redox Reactions For Enhancing Carbon Dioxide Electroreduction, Bao-Hua Hang, Jin-Tao Zhang Aug 2019

Regulation Of Copper Surface Via Redox Reactions For Enhancing Carbon Dioxide Electroreduction, Bao-Hua Hang, Jin-Tao Zhang

Journal of Electrochemistry

A large-scale application of fossil fuels has led to excessive emission of carbon dioxide (CO2), resulting in serious environmental issues. A promising path to reducing CO2 emissions is recycling CO2 into valuable chemicals and fuels through an electrochemical process. Herein, the redox reactions between copper (Cu) and ferric chloride (FeCl3) have been utilized to regulate the Cu surface composition and structure, aimed to improve the electrocatalytic activity toward CO2 reduction. Typically, a series of samples (named Cu-1h, Cu-2h, Cu-3h and Cu-4h) were prepared via the redox reactions for various time from 1 to …


Preparations And Electrocatalytic Properties Of Cu-Bipy-Btc-Derived Carbon-Based Catalyst For Oxygen Reduction Reaction, Li-Hua Zhang, Jun-Feng Chen, Wan-Tang Huang, Yong-You Hu, Jian-Hua Cheng, Yuan-Cai Chen Aug 2019

Preparations And Electrocatalytic Properties Of Cu-Bipy-Btc-Derived Carbon-Based Catalyst For Oxygen Reduction Reaction, Li-Hua Zhang, Jun-Feng Chen, Wan-Tang Huang, Yong-You Hu, Jian-Hua Cheng, Yuan-Cai Chen

Journal of Electrochemistry

Efficient and low-cost oxygen reduction reaction (ORR) electrocatalyst plays a key role for fuel cells. In this paper, ORR active metal organic framework (MOF: Cu-bipy-BTC, bipy = 2,2?-bipyridine, BTC = 1,3,5-tricarboxylate) was prepared using hydrothermal method, and then carbon-based material MOF-800 was obtained from pyrolyzing Cu-bipy-BTC at 800 °C. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen sorption isotherm and X-ray photolectron spectroscopy (XPS) were used to characterize the morphologies and structures of the catalysts. Linear sweep voltammetry (LSV) and current-time curve (i-t) were adopted to evaluate the electrocatalytic properties of the catalysts. …


Electrochemical Detection Of 4-Nitrophenol Based On Glassy Carbon Electrode Modified By Tio2Nps/Rgo Composite, Lin-Na Jiu, Yong-Qiang Cheng Aug 2019

Electrochemical Detection Of 4-Nitrophenol Based On Glassy Carbon Electrode Modified By Tio2Nps/Rgo Composite, Lin-Na Jiu, Yong-Qiang Cheng

Journal of Electrochemistry

4-nitrophenol (4-NP) has become factitious pollution, and presented a serious threat to the nature and human health. It is necessary to develop a convenient and fast detection method. In this work, the glassy carbon electrode modified by titanium dioxide nanoparticles (TiO2NPs)/reduced graphene oxide (RGO) composite as an electrochemical sensor was studied for the trace detection of 4-NP. The morphology of the composite was characterized by scanning electron microscopy (SEM). The homogeneous mixing of titanium dioxide nanoparticles and reduced graphene oxide increased the specific surface area of the composite, and facilitated the electrochemical reaction of 4-NP. The electrochemical characteristics …


Preface To Special Issue Of Electrochemical Reduction Of Carbon Dioxide, Qing Li, Min Liu Aug 2019

Preface To Special Issue Of Electrochemical Reduction Of Carbon Dioxide, Qing Li, Min Liu

Journal of Electrochemistry

No abstract provided.


Statuses, Challenges And Strategies In The Development Of Low-Temperature Carbon Dioxide Electroreduction Technology, Xu-Rui Zhang, Xiao-Lin Shao, Jin Yi, Yu-Yu Liu, Jiu-Jun Zhang Aug 2019

Statuses, Challenges And Strategies In The Development Of Low-Temperature Carbon Dioxide Electroreduction Technology, Xu-Rui Zhang, Xiao-Lin Shao, Jin Yi, Yu-Yu Liu, Jiu-Jun Zhang

Journal of Electrochemistry

Low-temperature carbon dioxide (CO2) electrochemical reduction technology is a hotspot for research and development in recent years as a way to reduce the negative impact of CO2 on the environment and to generate energy storage through converting electricity to low-carbon fuels. Although basic research on catalyst activity, product selectivity, and reaction mechanism has been widely reported, the design and practicality of catalytic stability and corresponding electrochemical reactor systems have not been given sufficient attention and systematic development. In this paper, two important factors affecting the development of CO2 electrochemical reduction technology in low temperature aqueous solution …


Effect Of Morphology Of Fe-N Codoped Carbon Nanomaterial On Electrochemical Reduction Reactions, Er-Ling Li, Fa Yang, Ming-Bo Ruan, Ping Song, Wei-Lin Xu Aug 2019

Effect Of Morphology Of Fe-N Codoped Carbon Nanomaterial On Electrochemical Reduction Reactions, Er-Ling Li, Fa Yang, Ming-Bo Ruan, Ping Song, Wei-Lin Xu

Journal of Electrochemistry

Graphene nanosheets (GS) and carbon nanotubes have been considered as good catalysts candidates for applications in energy conversion and storage. However, hybrids of GS and carbon nanotubes are always formed in transition metal-based nitrogen-doped system, making the system quite complex for exploring the structure-activity relationship. To prepare the catalysts with desired species controllably, we try to adjust the outcomes with the effect of nitrogen on the growth of carbon nanotubes. In this work, a series of Fe-N co-doped carbon hybrid catalysts containing N-doped GS or hybrids of GS/bamboo carbon nanotubes (BCNTs) or BCNTs were obtained with one-step pyrolyzed method. To …


Single-Layer Oxygen Deficiency Δ-Mno2 For Electrochemical Co2 Reduction, Yue-Feng Zhang, Jian-Jun Liu, Zeng-Xi Wei, Xin-Xin Tian, Jian-Min Ma Aug 2019

Single-Layer Oxygen Deficiency Δ-Mno2 For Electrochemical Co2 Reduction, Yue-Feng Zhang, Jian-Jun Liu, Zeng-Xi Wei, Xin-Xin Tian, Jian-Min Ma

Journal of Electrochemistry

Manganese dioxide (MnO2) has been widely used in catalysis. In addition, since the defect engineering can change the electronic properties of the catalyst, here we have systematically studied electrocatalytic carbon dioxide reduction reaction (CO2RR) on δ-MnO2 with and without oxygen deficiency, denoted as Ov-MnO2 and MnO2, respectively. We calculate the electronic properties and the intermediate of free energy for MnO2 and Ov-MnO2 with the help of spin-polarized density functional theory. By analyzing this result, we can find that the introduction of defects change the δ-MnO2 from semiconducting properties …


Copper-Based Compounds For Electrochemical Reduction Of Carbon Dioxide, Fan Yang, Pei-Lin Deng, You-Jia Han, Pan Jing, Bao-Yu Xia Aug 2019

Copper-Based Compounds For Electrochemical Reduction Of Carbon Dioxide, Fan Yang, Pei-Lin Deng, You-Jia Han, Pan Jing, Bao-Yu Xia

Journal of Electrochemistry

The electrochemical reduction of carbon dioxide (CO2) to useful chemicals and fuels has attracted enormous interest since the deteriorating global warming and energy shortage problems resulted from ever-increasing CO2 emission. Designing efficient catalysts is of capital significance to realize the efficient and selective conversion of CO2. Among various catalysts explored, copper-based compounds have promising potentials with acceptable efficiency for hydrocarbon production. Herein, recent advances on copper-based materials are summarized for electrochemical CO2 conversion. We intend to include the dimensional structure, different forms (alloy, oxide) and molecular catalysts in copper-based catalysts. Moreover, the reaction mechanisms …


Recent Progress In Copper-Based Catalysts For Electrochemical Co2 Reduction, Wen Lei, Wei-Ping Xiao, De-Li Wang Aug 2019

Recent Progress In Copper-Based Catalysts For Electrochemical Co2 Reduction, Wen Lei, Wei-Ping Xiao, De-Li Wang

Journal of Electrochemistry

As the situation of energy crisis and environmental pollution become more and more serious, the electrochemical reduction of carbon dioxide (CO2) has attracted lots of attention because of its multiple meanings such as environment, resources and economic benefits. In this paper, the state of the art electrochemical reduction of CO2 in aqueous solution is reviewed, and the latest research progress in Cu-based catalysts with different structures and morphologies is summarized. In the end, the application prospects, opportunities and challenges of Cu-based materials are briefly presented to provide an outlook for future research directions.


Recent Advances In Nanofluidic Electrochemistry For Biochemical Analysis, Zhong-Qiu Li, Zeng-Qiang Wu, Xing-Hua Xia Jun 2019

Recent Advances In Nanofluidic Electrochemistry For Biochemical Analysis, Zhong-Qiu Li, Zeng-Qiang Wu, Xing-Hua Xia

Journal of Electrochemistry

Nanofluidics, as a young research field, has been receiving more and more attentions. It has been successfully applied in various fields including nanoscale separation, biochemical sensing and energy conversion. The development of nanofluidics is closely related to electrochemistry that can provide a driving force for the study of the material transport characteristics in nanopores/nanochannels. On the other hand, nanopores/nanochannels can creat a microenvironment for study of spatially nanoconfined electrochemistry. The combination of nanofluidics and electrochemistry has given rise to many new theories and technologies for single molecule/particle analysis and nanofluid manipulation. Herein, we provide a review of the recent progresses …


Electrochemical Biosensors For Wastewater-Based Epidemiology, Yu-Wei Pan, Kang Mao, Franziska Tuerk, Zhu-Gen Yang Jun 2019

Electrochemical Biosensors For Wastewater-Based Epidemiology, Yu-Wei Pan, Kang Mao, Franziska Tuerk, Zhu-Gen Yang

Journal of Electrochemistry

Wastewater-based epidemiology (WBE) has been shown to be an innovative approach for evaluation of drug use trends and public health assessment by quantifying drug residues and/or metabolites (so-called biomarkers) in wastewater collected in a local treatment plant. Community sewage sensors have been proposed and demonstrated to be powerful tools for the analysis of sewage biomarkers. In particular, electrochemical biosensors have emerged as a rapid method for the analysis of biomarkers and pathogens in wastewater due to low cost, minimal sample processing and the ability to test in the field. It has been widely used for biomedical diagnosis, environmental monitoring and …


Single Particle Impact Electrochemistry: Analyses Of Nanoparticles And Biomolecules, Jian-Hua Zhang, Yi-Ge Zhou Jun 2019

Single Particle Impact Electrochemistry: Analyses Of Nanoparticles And Biomolecules, Jian-Hua Zhang, Yi-Ge Zhou

Journal of Electrochemistry

Single particle impact electrochemistry (SPIEC) has grown rapidly in recent years and shown great promise in the analysis of nanoparticle properties as well as the detection of biomolecules including DNA, RNA, protein, enzyme, bacteria, virus, vesicles and others. This minireview summarizes recent advances in electroanalytical applications of SPIEC according to different analytical methods, i.e., direct electrolysis of nanoparticles or labeled nanoparticles, direct electrolysis of soft particles encapsulated redox molecule, indirect electrochemistry of particles, area and diffusion blocking, and changes in current magnitude and collision frequency.


Research Progresses In Structural Modulation And Electrochemiluminescence Of Supertetrahedral Chalcogenide Clusters, Gang Lei, Yang Liu Jun 2019

Research Progresses In Structural Modulation And Electrochemiluminescence Of Supertetrahedral Chalcogenide Clusters, Gang Lei, Yang Liu

Journal of Electrochemistry

Electrochemiluminescence (ECL) exhibits a broad application prospect in the field of biological analysis due to its unique performance features, and the exploitation of high efficient ECL reagents offers an important tool for the development of sensors with excellent performance and practical clinical applications. Open-framework supertetrahedral chalcogenide clusters both possess the porous structure of molecular sieve and the excellent optical properties of the semiconductor, so it has attracted more and more attention in ECL analysis. Different from the traditional semiconductor quantum dots, the structure and composition of supertetrahedral chalcogenide clusters can be accurately controlled at the atomic level, and supertetrahedral chalcogenide …


Study On The Relationship Between Structure Of Supramolecular Ion Material And Performance Of Humidity Sensing, Hui-Min Tang, Hai-Long Yan, Li Zhang, Jun-Jie Fei, Ping Yu, Lan-Qun Mao Jun 2019

Study On The Relationship Between Structure Of Supramolecular Ion Material And Performance Of Humidity Sensing, Hui-Min Tang, Hai-Long Yan, Li Zhang, Jun-Jie Fei, Ping Yu, Lan-Qun Mao

Journal of Electrochemistry

Humidity measurement and control is one of the most notable issues in various areas, such as climate, industry,
agriculture, electronics, especially human comfort and health. In our previous study, we have found that a new kind of supramolecular
ionic material (SIM), consisting of an imidazolium-based dication (e.g., 1,10-bis(3-methylimidazolium-1-yl) decane, C10(mim)2) and
electroactive dianionic (e.g., 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), ABTS), shows ultrasensitive and ultrafast
response towards humidity sensing. Herein we prepared six kinds of imidazolium-based dications with different carbon chain
lengths (i.e., C4, C6, C8, C10, C12, C …


Cysteine And Cystamine Co-Self-Assembled Monolayers For In Vivo Detection Of Ascorbic Acid, Yue Zhang, Tao-Tao Feng, Wen-Liang Ji, Mei-Ning Zhang Jun 2019

Cysteine And Cystamine Co-Self-Assembled Monolayers For In Vivo Detection Of Ascorbic Acid, Yue Zhang, Tao-Tao Feng, Wen-Liang Ji, Mei-Ning Zhang

Journal of Electrochemistry

Self-assembled monolayers (SAMs), which form highly ordered monolayers on the electrode surface through the gold-suffer bond, have attracted much attention in recent years. This stable layer not only can regulate the wettable properties of surface, but also can act as a promoter towards redox-active molecules. Here, we developed a simple and effective method to construct cysteine and cystamine co-self-assembled monolayer on gold microelectrode for in vivo detection of ascorbic acid (AA). The molar ratio at 1:1 of mixed monolayer has been found the optimum to enhance the electron-transfer kinetics of AA oxidation at low potential (ca. 0.10 V), meanwhile, it …


A Low Noise Temperature Control System For Nanopore-Based Single Molecule Analysis, Cheng-Yu Yang, Zhen Gu, Zheng-Li Hu, Yi-Lun Ying, Yi-Tao Long Jun 2019

A Low Noise Temperature Control System For Nanopore-Based Single Molecule Analysis, Cheng-Yu Yang, Zhen Gu, Zheng-Li Hu, Yi-Lun Ying, Yi-Tao Long

Journal of Electrochemistry

Nanopore employs a single bio-molecule interface, which is a highly sensitive single-molecule detection technology for measuring single biomolecules such as DNA, RNA, protein, and peptide. The interaction between single molecule and nanopore is thermodynamically controlled. Therefore, it is urgent to precisely control the temperature of the nanopore system without introduction of any noise. In this paper, we have developed a low-noise temperature control system for single-molecule detection of nanopores to achieve precise regulation at the ambient temperature during measurements. The system utilizes the thermoelectric effect of the semiconductor refrigerating chip to heat or cool the detection chamber, while adopts electromagnetically …


Current Statuses And Challenges Of Wearable, Flexible Electronic Sensors And Energy Storage Devices, Zhong-Qian Song, Fang-Jie Han, Hui-Jun Kong, Jia-Nan Xu, Yu Bao, Dong-Xue Han, Li Niu Jun 2019

Current Statuses And Challenges Of Wearable, Flexible Electronic Sensors And Energy Storage Devices, Zhong-Qian Song, Fang-Jie Han, Hui-Jun Kong, Jia-Nan Xu, Yu Bao, Dong-Xue Han, Li Niu

Journal of Electrochemistry

With the developments in the internet of things, artificial intelligence and human-computer interaction technology, soft, flexible and wearable electronic devices provide a novel platform for monitoring of the human vital signs, and recognition of human behaviors to connect human being and machine without consciousness. Recent progresses about wearable and flexible electronics that can provide accurate, non-invasive, long-term and continuous monitoring of human vital sings including pulse, temperature, skin activities, breathing and heart rate are summarized. The working mechanisms, current statuses and challenges in temperature sensor, strain sensor and pressure sensor are discussed. The review concludes with a prospect of current …


Recent Progresses Of Enzymes Assembled In Nanochannels For Catalytic Reaction, Shangguan Li, Xu Xuan, Liu Song-Qin Jun 2019

Recent Progresses Of Enzymes Assembled In Nanochannels For Catalytic Reaction, Shangguan Li, Xu Xuan, Liu Song-Qin

Journal of Electrochemistry

The research of enzymes assembled and catalytic reaction not only is beneficial to exploit the essences of life’s activities, but also is significant in developing the practical application of enzymes in these areas including industrial production, analysis and detection, treatment of disease, etc. The effective immobilization and ordered assembly of enzymes are important methods for maintaining the catalytic activity, catalytic reaction stability and catalytic process controllability of enzymes. Among them, single or multi-enzymes are immobilized orderly in nanochannels that exhibit unique features and advantages, accordingly, the confinement effect of nanochannels can increase the selectivity and catalytic efficiency of enzymes through …


Electrocatalytic Nanomaterials For Reduction Of Hydrogen Peroxide As Potential Radioprotectors, Rui-Hong Jia, Jin-Xuan Zhang, Xiao-Dong Zhang, Mei-Xian Li Jun 2019

Electrocatalytic Nanomaterials For Reduction Of Hydrogen Peroxide As Potential Radioprotectors, Rui-Hong Jia, Jin-Xuan Zhang, Xiao-Dong Zhang, Mei-Xian Li

Journal of Electrochemistry

Nanomaterials have shown many potential application prospects in the biomedical field, such as medical imaging, drug delivery and biosensing due to their unique physical and chemical properties. In this review we focus on nanomaterials that have shown not only abilities of radiation protection, but also good electrocatalytic activities toward reduction reactions of hydrogen peroxide and oxygen. We discuss the abilities of radiation protection of these nanomaterials that are ascribed to their enzyme-like activities because their catalytic properties provide an effective pathway for scavenging free radicals in vivo via rapid reactions with reactive oxygen species. We also provide insights into electrocatalytic …


Correlated Optical Imaging And Electrochemical Recording For Studying Single Nanoparticle Collisions, Lin-Lin Sun, Wei Wang, Hong-Yuan Chen Jun 2019

Correlated Optical Imaging And Electrochemical Recording For Studying Single Nanoparticle Collisions, Lin-Lin Sun, Wei Wang, Hong-Yuan Chen

Journal of Electrochemistry

With the development of nano-fabrications in recent years, a novel strategy based on random collisions of single electroactive nanoparticles (NPs) onto an inert ultramicroelectrode (UME) has been emerged in the field of nanoelectrochemistry, and named as single nanoparticles collisions (SNCs). The technique uses a chronoamperometric method to detect transient current generated by random collisions of single NPs onto an UME. By analyzing the current signal, one could study the properties of single NPs. Although this technique can detect electrochemical or electrocatalytic currents of a single NP, the traditional SNCs technology lacks necessary spatial resolution to identify and characterize a specific …


Electrochemical Analysis And Sensing Preface, Yi-Tao Long, Yang Tian Apr 2019

Electrochemical Analysis And Sensing Preface, Yi-Tao Long, Yang Tian

Journal of Electrochemistry

No abstract provided.


Advanced Electrochemical Strategy For In Vivo Detection Of Electrochemically Inactive Molecules, Zhou Qi, Zhang Li-Min, Tian Yang Apr 2019

Advanced Electrochemical Strategy For In Vivo Detection Of Electrochemically Inactive Molecules, Zhou Qi, Zhang Li-Min, Tian Yang

Journal of Electrochemistry

Development of efficient electrochemical strategies for in vivo analysis of electrochemically inactive molecules in brain is significant for understanding and studying their molecular mechanism and roles playing in brain and brain diseases. This review gives a brief introduction on the advanced in vivo electrochemical sensor for detection of non-redox active molecules from three aspects: 1) The selection and design of specific molecules are highly desirable to develop electrochemical sensors with high selectivity for measuring electrochemical inactive molecules through converting specific chemical reaction involved by target to electric signal; 2) The analysis based on ion current rectification occurred at spatial confined …


Graphene-Like Secondary-Laser-Etched Polyimide Film Decorated With CuXO Nanocomposites: A Novel Electrode Substrate For Non-Enzymatic Glucose Sensors, Wan-Lin Dai, Zhi-Wei Lu, Jian-Shan Ye Apr 2019

Graphene-Like Secondary-Laser-Etched Polyimide Film Decorated With CuXO Nanocomposites: A Novel Electrode Substrate For Non-Enzymatic Glucose Sensors, Wan-Lin Dai, Zhi-Wei Lu, Jian-Shan Ye

Journal of Electrochemistry

In this work, a novel electrode substrate with graphene-like surface and CuxO nanocomposites derived from secondary-laser-etched polyimide (SLEPI) film was synthesized and applied in non-enzymatic glucose detection for the first time. Characterizations indicate that the as-prepared SLEPI/CuxO film electrode (SLEPI/CuxO-FE) possessed huge surface area, plentiful active sites and excellent electrocatalytic performance. The obtained sensor exhibited the high sensitivity and selectivity for glucose determination with a linear range of 0.05 mmol·L-1 to 3 mmol·L-1 and a detection limit of 1.72 μmol·L-1 (S/N=3), which provides a simple, flexible and low-cost electrochemical sensor for …


Preparation And Electrocatalytic Oxygen Reduction Performance Of Self-Doped Sludge-Derived Carbon, Ya-Li Ye, Wei-Ming Feng, Ge Li, Zhen-Chao Lei, Chun-Hua Feng Apr 2019

Preparation And Electrocatalytic Oxygen Reduction Performance Of Self-Doped Sludge-Derived Carbon, Ya-Li Ye, Wei-Ming Feng, Ge Li, Zhen-Chao Lei, Chun-Hua Feng

Journal of Electrochemistry

The development of low-cost, high-performance cathode catalysts is critical for practical application of fuel cells. Here, the N, P-doped porous graphene-like carbon with outstanding oxygen reduction reaction (ORR) performance was synthesized by pyrolysis of surplus sludge, which functioned as a self-doped, self-activated, and self-templated precursor by acclimation with continuous feedings of phenol. The results show that the amounts of microorganisms were enriched after acclimation, with increasing contents of N, P, Fe, as well as C atoms. The increasing pyrolysis temperature resulted in the formation of an ordered graphitic structure, however, the excessively high temperature induced the drop in the amounts …


Surface-Enhanced Infrared Absorption Spectroscopy- Surface Sensitive In Situ Label-Free Spectroelectrochemistry, Lie Wu, Jian-Long Sun, Xiu-E Jiang Apr 2019

Surface-Enhanced Infrared Absorption Spectroscopy- Surface Sensitive In Situ Label-Free Spectroelectrochemistry, Lie Wu, Jian-Long Sun, Xiu-E Jiang

Journal of Electrochemistry

Surface-enhanced infrared absorption spectroscopy (SEIRAS), especially in attenuated total reflectance (ATR) mode, taking advantages of surface-enhancement and near-field optical effect of enhancing substrate, is a ultra-sensitive infrared spectroscopy, which could achieve surface-selected detection at a sub-monolayer level. Since the enhancing substrate could simultaneously serve as a working electrode, ATR-SEIRAS is a readily surface-sensitive in situ label-free spectroelectrochemistry technique. With the advantages of small influence from metal species on enhancement effect, good potential reversibility of spectra, simple surface selection rule and sensitivity to polar molecules, ATR-SEIRAS has been widely applied in the fields of orientation analysis and species identification of interfacial …


In Situ/Operando Visualization Of Electrode Processes In Lithium-Sulfur Batteries: A Review, Shuang-Yan Lang, Xin-Cheng Hu, Rui Wen, Li-Jun Wan Apr 2019

In Situ/Operando Visualization Of Electrode Processes In Lithium-Sulfur Batteries: A Review, Shuang-Yan Lang, Xin-Cheng Hu, Rui Wen, Li-Jun Wan

Journal of Electrochemistry

Lithium-sulfur (Li-S) batteries have been regarded as one of the most promising candidates for the next-generation energy storage devices. Fundamental understanding of the structure and evolution processes at electrode-electrolyte interfaces is essential to the further development. In this review, we summarize recent advances in the interfacial observations by means of various in situ/operando visualization techniques, including scanning probe microscopy (SPM), electron microscopy (EM), X-ray microscopy (XRM) and optical microscopy (OM). The real-time investigation provides important evidence for the morphology and component changes including S/Li2S transformation, polysulfide dissolution on cathodes and Li/solid electrolyte interphase (SEI) evolution on anodes, which …


Sensitive And Reusable Electrogenerated Chemiluminescence Aptasensor Fabricated By Electrochemically Double Covalent Coupling Method For The Detection Of Cocaine, Xiao-Feia Wang, Tinga Zhang, Bing Wang, Hong-Lan Qi, Cheng-Xiao Zhang Apr 2019

Sensitive And Reusable Electrogenerated Chemiluminescence Aptasensor Fabricated By Electrochemically Double Covalent Coupling Method For The Detection Of Cocaine, Xiao-Feia Wang, Tinga Zhang, Bing Wang, Hong-Lan Qi, Cheng-Xiao Zhang

Journal of Electrochemistry

A double covalent coupling method based on click chemistry and diazonium chemistry was developed for the fabrication of a sensitive and reusable electrogenerated chemiluminescence (ECL) aptasensor. As a proof-of-concept, cocaine was chosen as a model target, and a specific aptamer was chosen as a recognition molecule element, while ruthenium complex derivative (Ru1) as an ECL signal compound. The ECL aptasensor was fabricated by electrochemically diazotizing a phenylazide on the surface of a glassy carbon electrode, and then, coupling the alkyne functionalized Ru1-labeled cocaine aptamer through click chemistry. The ECL aptasensor was facilely used to determine cocaine in the range from …


Recent Progress Of Electrochemiluminescence Sensors Based On Electrically Heated Electrode, Hui-Fang Zhang, Yi-Ting Chen, Fang Luo, Zhen-Yu Lin, Guo-Nan Chen Apr 2019

Recent Progress Of Electrochemiluminescence Sensors Based On Electrically Heated Electrode, Hui-Fang Zhang, Yi-Ting Chen, Fang Luo, Zhen-Yu Lin, Guo-Nan Chen

Journal of Electrochemistry

Electrochemiluminescence (ECL) has broad application in the fields of environmental monitoring and biological analysis due to its intrinsic advantages such as excellent versatility, good detection sensitivity, and high specificity. The intensity of ECL can be influenced by temperature variation in the ECL quantum efficiency and the rate of electrochemical reaction. However, traditional temperature control is commonly realized through bulk solutions heating, which is complicated and unfavorable for detection when the volatile and thermally unstable materials existed. In order to address these problems, electrically heated electrodes are used to adjust the temperature desired. The major character of this technique lies in …


Application Of Nanomaterials In The Detection Of Volatile Organic Compounds In Exhaled Breath For Cancer Diagnosis, Wan-Qiao Bai, Xue-Zhi Qiao, Tie Wang Apr 2019

Application Of Nanomaterials In The Detection Of Volatile Organic Compounds In Exhaled Breath For Cancer Diagnosis, Wan-Qiao Bai, Xue-Zhi Qiao, Tie Wang

Journal of Electrochemistry

Volatile organic compounds (VOCs) generated in human body can reflect one’s health state, and numerous diseases are identified by some VOCs biomarkers. More recently, analyses of VOCs biomarkers from exhaled breath have turned into a research frontier worldwide because it offers a noninvasive way for diseases diagnosis. Various kinds of nanomaterials are used to enhance the performance of sensing techniques, and play an essential role in miniaturization detection. In this review, several kinds of nanomaterials (metallic, metal oxide, carbon-based, composites and MOFs-based materials) used in various VOCs detection methods, especially in VOCs sensors are summarized. Learning from the successful utilization …


Sensitive Photoelectrochemical Assay Of Nucleic Acids Based On Catalytic Hairpin Assembly And Ru(Nh3)63+, Ya-Min Fu, Xiao-Xia Yan, Xiao-Hua Zhang, Jin-Hua Chen Apr 2019

Sensitive Photoelectrochemical Assay Of Nucleic Acids Based On Catalytic Hairpin Assembly And Ru(Nh3)63+, Ya-Min Fu, Xiao-Xia Yan, Xiao-Hua Zhang, Jin-Hua Chen

Journal of Electrochemistry

A simple “signal-on” photoelectrochemical (PEC) sensing platform for sensitive assay of nucleic acids was developed by coupling catalytic hairpin assembly (CHA) signal amplification strategy with Ru(NH3)63+. Herein, cadmium sulfide (CdS) was deposited on the TiO2/indium tin oxide (ITO) electrode by a method of successive ionic layer adsorption and reaction (SILAR), serving as one kind of photoelectric material to broaden absorption range of TiO2 and to improve the photoelectric conversion efficiency. Thereafter, the capture DNA (C-DNA) was immobilized on the CdS/TiO2/ITO electrode. Simultaneously, Au-hairpin DNA probe 1 (Au-HP1) and hairpin DNA …