Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Klein Paradox With Spin-Resolved Electrons And Positrons, P Krekora, Q Su, Rainer Grobe Dec 2005

Klein Paradox With Spin-Resolved Electrons And Positrons, P Krekora, Q Su, Rainer Grobe

Faculty publications – Physics

Using numerical solutions to relativistic quantum field theory with space-time resolution, we illustrate how an incoming electron wave packet with a definite spin scatters off a supercritical potential step. We show that the production rate is reduced of only those electrons that have the same spin as the incoming electron is reduced. This spin-resolved result further clarifies the importance of the Pauli-exclusion principle for the Klein paradox.


Kinetic Evaluation Of Human Cloned Coproporphyrinogen Oxidase Using A Ring Isomer Of The Natural Substrate, Marjorie A. Jones, Christopher L. Cooper, Timothy D. Lash Nov 2005

Kinetic Evaluation Of Human Cloned Coproporphyrinogen Oxidase Using A Ring Isomer Of The Natural Substrate, Marjorie A. Jones, Christopher L. Cooper, Timothy D. Lash

Faculty Publications – Chemistry

Background: The enzyme coproporphyrinogen oxidase (copro'gen oxidase) converts coproporphyrinogen-Ill (GIII) to protoporphyrinogen-IX via an intermediary monovinyl porphyrinogen. The A ring isomer coproporphyrinogen-IV (C-IV) has previously been shown to be a substrate for copro'gen oxidase derived from avian erythrocytes. In contrast to the authentic substrate (GIII) where only a small amount of the monovinyl intermediate is detected, C-IV gives rise to a monovinyl intermediate that accumulates before being converted to an isomer of protoporphyrinogen-IX. No kinetic studies have been carried out using the purified human copro'gen oxidase to evaluate its ability to process both the authentic substrate as well as analogs. …


Electron-Impact Ionization Of Hydrogen And Lithiumlike Systems, M A. Uddin, Abul Kalam Fazlul Haque, A K. Basak, Khondkar R. Karim, B C. Saha Sep 2005

Electron-Impact Ionization Of Hydrogen And Lithiumlike Systems, M A. Uddin, Abul Kalam Fazlul Haque, A K. Basak, Khondkar R. Karim, B C. Saha

Faculty publications – Physics

The electron impact single ionization cross sections on a number of targets with atomic number Z=1-92 in the H and Li isoelectronic sequences are calculated using a modified version of the recently propounded relativisitic improved binary-encounter dipole (MRIBED) model [M. A. Uddin , Phys. Rev. A 70, 032706 (2004); 71, 032715 (2005)]. The modified RQIBED (MRIBED) model along with a Z-dependent factor in it is found remarkably successful in the applications to H- and Li-like systems and also valid for the ionization of a filled s orbit including the He-like targets.


Microscopic Theory Of The Low Frequency Raman Modes In Germanium Nanocrystals, Shang-Fen Ren, Peter Y. Yu May 2005

Microscopic Theory Of The Low Frequency Raman Modes In Germanium Nanocrystals, Shang-Fen Ren, Peter Y. Yu

Faculty publications – Physics

We have studied the Raman intensities of low-frequency phonon modes in germanium (Ge) nanocrystals (NC) with varying sizes by using a microscopic valence force field model. The results are compared with the predictions of the continuum model of Lamb using a projection method. We found that the l=0 spheroidal Lamb modes are Raman active in the parallel polarization scattering geometry, while the l=2 spheroidal Lamb modes are active in the crossed polarization geometry. This result agrees with the group theory prediction that the torsional Lamb modes are not Raman active, but is in disagreement with the identification of torsional Lamb …


Computation Of Electron-Impact K-Shell Ionization Cross Sections Of Atoms, M A. Uddin, Abul Kalam Fazlul Haque, M Masum Billah, A K. Basak, Khondkar R. Karim, B C. Saha Mar 2005

Computation Of Electron-Impact K-Shell Ionization Cross Sections Of Atoms, M A. Uddin, Abul Kalam Fazlul Haque, M Masum Billah, A K. Basak, Khondkar R. Karim, B C. Saha

Faculty publications – Physics

The total cross sections of electron impact single K-shell ionization of atomic targets, with a wide range of atomic numbers from Z=6-50, are evaluated in the energy range up to about 10 MeV employing the recently proposed modified version of the improved binary-encounter dipole (RQIBED) model [Uddin , Phys. Rev. A 70, 032706 (2004)], which incorporates the ionic and relativistic effects. The experimental cross sections for all targets are reproduced satisfactorily even in the relativistic energies using fixed generic values of the two parameters in the RQIBED model. The relativistic effect is found to be significant in all targets except …