Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

PDF

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 31 - 60 of 4561

Full-Text Articles in Physical Sciences and Mathematics

The Interplay Of Spin, Charge, And Heat: From Metal/Insulator Heterostructures To Perovskite Bilayers, Sam M. Bleser Mar 2024

The Interplay Of Spin, Charge, And Heat: From Metal/Insulator Heterostructures To Perovskite Bilayers, Sam M. Bleser

Electronic Theses and Dissertations

In this dissertation begin with an investigation of non-local spin transport in an amorphous germanium (a-Ge) sample via the inverse spin Hall effect (ISHE). In that study we show that commonly used techniques such as differential conductance and delta mode of a paired Keithley 6221/2182a for non-local resistance measurements can lead to false indicators of spin transport. Next, we turn out attention to a thickness dependent study in thermally-evaporated chromium (Cr) thin films on a bulk polycrystalline yttrium-iron-garnet (YIG) substrate. This project analyzed the spin transport in the Cr films versus thickness via the longitudinal spin Seebeck effect (LSSE). This …


Thermal, Electrical, And Spin Transport: Encompassing Low-Damping Ferromagnets And Antiferromagnetic/Ferromagnetic Heterostructures, Matthew Ryan Natale Mar 2024

Thermal, Electrical, And Spin Transport: Encompassing Low-Damping Ferromagnets And Antiferromagnetic/Ferromagnetic Heterostructures, Matthew Ryan Natale

Electronic Theses and Dissertations

Continuing technological advancements bring forth escalating challenges in global energy consumption and subsequent power dissipation, posing significant economic and environmental concerns. In response to these difficulties, the fields of thermoelectrics, spintronics, and spincaloritronics emerge as contemporary solutions, each presenting unique advantages. Thermoelectric devices, based on the Seebeck effect, other a passive, carbon-free energy generating solution from waste heat. Although current thermoelectric technology encounters hurdles in achieving optimal efficiencies without intricate designs or complex materials engineering, recently research into low-damping metallic ferromagnetic thin films have provided a new method to enhance spin wave lifetimes, thus contributing to thermoelectric voltage improvements. As …


A Bayesian Approach For Lifetime Modeling And Prediction With Multi-Type Group-Shared Missing Covariates, Hao Zeng, Xuxue Sun, Kuo Wang, Yuxin Wen, Wujun Si, Mingyang Li Feb 2024

A Bayesian Approach For Lifetime Modeling And Prediction With Multi-Type Group-Shared Missing Covariates, Hao Zeng, Xuxue Sun, Kuo Wang, Yuxin Wen, Wujun Si, Mingyang Li

Engineering Faculty Articles and Research

In the field of reliability engineering, covariate information shared among product units within a specific group (e.g., a manufacturing batch, an operating region), such as operating conditions and design settings, exerts substantial influence on product lifetime prediction. The covariates shared within each group may be missing due to sensing limitations and data privacy issues. The missing covariates shared within the same group commonly encompass a variety of attribute types, such as discrete types, continuous types, or mixed types. Existing studies have mainly considered single-type missing covariates at the individual level, and they have failed to thoroughly investigate the influence of …


Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng Feb 2024

Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng

Journal of Electrochemistry

Redox potentials and acidity constants are key properties for evaluating the performance of energy materials. To achieve computational design of new generation of energy materials with higher performances, computing redox potentials and acidity constants with computational chemistry have attracted lots of attention. However, many works are done by using implicit solvation models, which is difficult to be applied to complex solvation environments due to hard parameterization. Recently, ab initio molecular dynamics (AIMD) has been applied to investigate real electrolytes with complex solvation. Furthermore, AIMD based free energy calculation methods have been established to calculate these physical chemical properties accurately. However, …


The Behavior Of ½⟨111⟩ Screw Dislocations In W–Mo Alloys Analyzed Through Atomistic Simulations, Lucas A. Heaton, Kevin Chu, Adib J. Samin Feb 2024

The Behavior Of ½⟨111⟩ Screw Dislocations In W–Mo Alloys Analyzed Through Atomistic Simulations, Lucas A. Heaton, Kevin Chu, Adib J. Samin

Faculty Publications

Analyzing plastic flow in refractory alloys is relevant to many different commercial and technological applications. In this study, screw dislocation statics and dynamics were studied for various compositions of the body-centered cubic binary alloy tungsten–molybdenum (W–Mo). The core structure did not appear to change for different alloy compositions, consistent with the literature. The pure tungsten and pure molybdenum samples had the lowest plastic flow, while the highest dislocation velocities were observed for equiatomic, W0.5Mo0.5 alloys. In general, dislocation velocities were found to largely align with a well-established dislocation mobility phenomenological model supporting two discrete dislocation mobility regimes, …


Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang Feb 2024

Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang

Journal of Electrochemistry

In recent years, joint time-frequency analysis has once again become a research hotspot. Supercapacitors have high power density and long service life, however, in order to balance between power density and energy density, two key factors need to be considered: (i) the specific surface area of the porous matrix; (ii) the electrolyte accessibility to the intra-pore space of porous carbon matrix. Electrochemical impedance spectra are extensively used to investigate charge penetration ratio and charge storage mechanism in the porous electrode for capacitance energy storage. Furthermore, similar results could be obtained by different methods such as stable-state analysis in the frequency …


Pisa Printing Microneedles With Controllable Aqueous Dissolution Kinetics, Aaron Priester, Jimmy Yeng, Yuwei Zhang, Krista Hilmas, Risheng Wang, Anthony J. Convertine Feb 2024

Pisa Printing Microneedles With Controllable Aqueous Dissolution Kinetics, Aaron Priester, Jimmy Yeng, Yuwei Zhang, Krista Hilmas, Risheng Wang, Anthony J. Convertine

Chemistry Faculty Research & Creative Works

This study focused on the development of high-resolution polymeric structures using polymer-induced self-assembly (PISA) printing with commercially available digital light-processing (DLP) printers. Significantly, soluble solids could be 3D-printed using this methodology with controllable aqueous dissolution rates. This was achieved using a highly branched macrochain transfer agent (macro-CTA) containing multiple covalently attached CTA groups. In this work, the use of acrylamide as the self-assembling monomer in isopropyl alcohol was explored with the addition of N-(butoxymethyl)acrylamide to modulate the aqueous dissolution kinetics. PISA-printed microneedles were observed to have feature sizes as small as 27 μm, which was close to the resolution limit …


Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave Feb 2024

Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave

Dissertations, Theses, and Capstone Projects

The challenge of establishing a sustainable and circular economy for materials in medicine and technology necessitates bioinspired design. Nature's intricate machinery, forged through evolution, relies on a finite set of biomolecular building blocks with through-bond and through-space interactions. Repurposing these molecular building blocks requires a seamless integration of computational modeling, design, and experimental validation. The tools and concepts developed in this thesis pioneer new directions in peptide-materials design, grounded in fundamental principles of physical chemistry. We present a synergistic approach that integrates experimental designs and computational methods, specifically molecular dynamics simulations, to gain in-depth molecular insights crucial for advancing the …


Residual Optical Absorption From Native Defects In Cdsip2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Elizabeth M. Scherrer, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton Feb 2024

Residual Optical Absorption From Native Defects In Cdsip2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Elizabeth M. Scherrer, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton

Faculty Publications

CdSiP2 crystals are used in optical parametric oscillators to produce tunable output in the mid-infrared. As expected, the performance of the OPOs is adversely affected by residual optical absorption from native defects that are unintentionally present in the crystals. Electron paramagnetic resonance (EPR) identifies these native defects. Singly ionized silicon vacancies (V-Si) are responsible for broad optical absorption bands peaking near 800, 1033, and 1907 nm. A fourth absorption band, peaking near 630 nm, does not involve silicon vacancies. Exposure to 1064 nm light when the temperature of the CdSiP2 crystal is near 80K converts …


The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry Jan 2024

The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry

Journal of Electrochemistry

No abstract provided.


Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma Jan 2024

Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma

Journal of Electrochemistry

Owing to the merits of high energy density, as well as clean and sustainable properties, hydrogen has been deemed to be a prominent alternative energy to traditional fossil fuels. Electrocatalytic hydrogen evolution reaction (HER) has been considered to be mostly promising for achieving green hydrogen production, and has been widely studied in acidic and alkaline solutions. In particular, HER in alkaline media has high potential to achieve large-scale hydrogen production because of the increased durability of electrode materials. However, for the currently most prominent catalyst Pt, its HER kinetics in an alkaline solution is generally 2–3 orders lower than that …


Stability Of A Solid Oxide Cell Stack Under Direct Internal-Reforming Of Hydrogen-Blended Methane, Ya-Fei Tang, An-Qi Wu, Bei-Bei Han, Hua Liu, Shan-Jun Bao, Wang-Lin Lin, Ming Chen, Wan-Bing Guan, Subhash C. Singhal Jan 2024

Stability Of A Solid Oxide Cell Stack Under Direct Internal-Reforming Of Hydrogen-Blended Methane, Ya-Fei Tang, An-Qi Wu, Bei-Bei Han, Hua Liu, Shan-Jun Bao, Wang-Lin Lin, Ming Chen, Wan-Bing Guan, Subhash C. Singhal

Journal of Electrochemistry

In this work, the long-term stability and degradation mechanism of a direct internal-reforming solid oxide fuel cell stack (IR-SOFC stack) using hydrogen-blended methane steam reforming were investigated. An overall degradation rate of 2.3%·kh–1 was found after the stack was operated for 3000 hours, indicating a good long-term stability. However, the voltages of the two cells in the stack were increased at the rates of 3.38 mV·kh–1 and 3.78 mV·kh–1, while the area specific resistances of the three metal interconnects in the stack were increased to 0.276 Ω·cm2, 0.254 Ω·cm2 and 0.249 Ω·cm2 …


Photoluminescence Of Beryllium-Related Defects In Gallium Nitride, Mykhailo Vorobiov, Mykhailo Vorobiov Jan 2024

Photoluminescence Of Beryllium-Related Defects In Gallium Nitride, Mykhailo Vorobiov, Mykhailo Vorobiov

Theses and Dissertations

This study explores the potential of beryllium (Be) as an alternative dopant to magnesium (Mg) for achieving higher hole concentrations in gallium nitride (GaN). Despite Mg prominence as an acceptor in optoelectronic and high-power devices, its deep acceptor level at 0.22 eV above the valence band limits its effectiveness. By examining Be, this research aims to pave the way to overcoming these limitations and extend the findings to aluminum nitride and aluminum gallium nitride (AlGaN) alloy. Key contributions of this work include. i)Identification of three Be-related luminescence bands in GaN through photoluminescence spectroscopy, improving the understanding needed for further material …


Electrochromic Polymers: From Electrodeposition To Hybrid Solid Devices, Haradou Sare, Dongmei Dong Jan 2024

Electrochromic Polymers: From Electrodeposition To Hybrid Solid Devices, Haradou Sare, Dongmei Dong

Faculty Scholarship for the College of Science & Mathematics

This paper reports on the linear colorimetric and electrochromic (EC) characteristics of electrodeposited polyaniline (PANI) films. This paper also investigates the infrared EC properties of acid-doped PANI films. The electrochemical polymerization method was employed to create a porous and thin PANI film layer onto PET-ITO substrates. This layer was capped with WO3 film to create a gel electrolyte sandwich structure that demonstrates the compatibility of PANI films with cathodic WO3 films in full devices. The electrodeposition of the film was fabricated by applying different voltages and time, with the optimal film quality achieved with the 1.7 V voltage and a …


Effect Of Resin Bleed Out On Compaction Behavior Of The Fiber Tow Gap Region During Automated Fiber Placement Manufacturing, Von Clyde Jamora, Virginia Rauch, Sergii G. Kravchenko, Oleksandr G. Kravchenko Jan 2024

Effect Of Resin Bleed Out On Compaction Behavior Of The Fiber Tow Gap Region During Automated Fiber Placement Manufacturing, Von Clyde Jamora, Virginia Rauch, Sergii G. Kravchenko, Oleksandr G. Kravchenko

Mechanical & Aerospace Engineering Faculty Publications

Automated fiber placement is a state-of-the-art manufacturing method which allows for precise control over layup design. However, AFP results in irregular morphology due to fiber tow deposition induced features such as tow gaps and overlaps. Factors such as the squeeze flow and resin bleed out, combined with large non-linear deformation, lead to morphological variability. To understand these complex interacting phenomena, a coupled multiphysics finite element framework was developed to simulate the compaction behavior around fiber tow gap regions, which consists of coupled chemo-rheological and flow-compaction analysis. The compaction analysis incorporated a visco-hyperelastic constitutive model with anisotropic tensorial prepreg viscosity, which …


Robot-Based 3d Printing, Aaron Hoffman Jan 2024

Robot-Based 3d Printing, Aaron Hoffman

Williams Honors College, Honors Research Projects

Details of a large-format 3D printer created to print experimental materials, test multi-axis print techniques, and quickly print large objects. The printer consists of a 7-axis robotic arm and pellet extruder, which are controlled by a PC. Experimental materials such as recycled polymers or carbon-fiber reinforced materials can be easily tested with the pellet format of the extruder. The printer can perform different printing techniques and can be used to experiment with material properties when using these techniques with different polymers. The print surface is around 5 times larger than the average commercial 3D printer, and the robotic arm provides …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Nitrogen-Doped Graphite Felt On The Performance Of Aqueous Quinone-Based Redox Flow Batteries, Heng Zhang, Li-Xing Xia, Shan Jiang, Fu-Zhi Wang, Zhan-Ao Tan Dec 2023

Nitrogen-Doped Graphite Felt On The Performance Of Aqueous Quinone-Based Redox Flow Batteries, Heng Zhang, Li-Xing Xia, Shan Jiang, Fu-Zhi Wang, Zhan-Ao Tan

Journal of Electrochemistry

Modification of electrode is vitally important for achieving high energy efficiency in aqueous quinone-based redox flow batteries (AQRFBs). The modification of graphite felt (GF) was carried out by means of urea hydrothermal reaction, and simultaneously, the effects of hydrothermal reaction time on the functional groups and surface structure of nitrogen-doped graphite felt were studied. The surface morphology and defect, element content and surface chemical state of the modified electrode were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) test, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the modified electrodes was evaluated by cyclic voltammetry, electrochemical impedance …


An In-Situ Raman Spectroscopic Study On The Interfacial Process Of Carbonate-Based Electrolyte On Nanostructured Silver Electrode, Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao Dec 2023

An In-Situ Raman Spectroscopic Study On The Interfacial Process Of Carbonate-Based Electrolyte On Nanostructured Silver Electrode, Yu Gu, Yuan-Fei Hu, Wei-Wei Wang, En-Ming You, Shuai Tang, Jian-Jia Su, Jun Yi, Jia-Wei Yan, Zhong-Qun Tian, Bing-Wei Mao

Journal of Electrochemistry

The solid-electrolyte interphase (SEI) plays a key role in anodes for rechargeable lithium-based battery technologies. However, a thorough understanding in the mechanisms of SEI formation and evolution remains a major challenge, hindering the rapid development and wide applications of Li-based batteries. Here, we devise a borrowing surface-enhanced Raman scattering (SERS) activity strategy by utilizing a size optimized Ag nanosubstrate to in-situ monitor the formation and evolution of SEI, as well as its structure and chemistry in an ethylene carbonate-based electrolyte. To ensure a reliable in-situ SERS investigation, we designed a strict air-tight Raman cell with a three-electrode configuration. Based on …


Electrochemical Performance Of Porous Ceramic Supported Tubular Solid Oxide Electrolysis Cell, Heng-Ji Wang, Wen-Guo Chen, Zhou-Yi Quan, Kai Zhao, Yi-Fei Sun, Min Chen, Ogenko Volodymyr Dec 2023

Electrochemical Performance Of Porous Ceramic Supported Tubular Solid Oxide Electrolysis Cell, Heng-Ji Wang, Wen-Guo Chen, Zhou-Yi Quan, Kai Zhao, Yi-Fei Sun, Min Chen, Ogenko Volodymyr

Journal of Electrochemistry

Solid oxide electrolysis cell (SOEC) is an efficient and clean energy conversion technology that can utilize electricity obtained from renewable resources, such as solar, wind, and geothermal energy to electrolyze water and produce hydrogen. The conversion of abundant intermittent energy to hydrogen energy would facilitate the efficient utilization of energy resources. SOEC is an all-ceramic electrochemical cell that operates in the intermediate to high temperature range of 500–750 ℃. Compared with traditional low temperature electrolysis technology (e.g., alkaline or proton exchange membrane cells operating at ~100 ℃), the high-temperature SOEC can increase the electrolysis efficiency from 80% to ~100%, providing …


Combined Risk Based Inspection And Fault Tree Analysis For Repetitive 3-Phase Line Piping Leakage At West Java Offshore Topside Facility, Dona Yuliati, Akhmad Herman Yuwono, Datu Rizal Asral, Donanta Dhaneswara Dec 2023

Combined Risk Based Inspection And Fault Tree Analysis For Repetitive 3-Phase Line Piping Leakage At West Java Offshore Topside Facility, Dona Yuliati, Akhmad Herman Yuwono, Datu Rizal Asral, Donanta Dhaneswara

Journal of Materials Exploration and Findings

Hydrocarbon releases might result in serious consequences in various aspects. In addition to the contribution to environmental pollution, repetitive leakages need high repair costs. This study aim is to minimize potential repetitive leakage for other typical 3-phase piping systems. We conducted the risk assessment by adopting Risk Based Inspection (RBI) API 581 to identify risk level, calculating piping lifetime, recommended inspection plan and mitigations. The most relevant root causes can be obtained through quantitative Fault Tree Analysis (FTA). Observation and investigation was taken from eight 3-phase piping systems that experienced repetitive leakages. It has been found that the risk level …


Nitrogen Gas Quenching Pressure Effect On Bs S155 Alloy Steel In Vacuum Furnace, Agus Mulyadi Hasanudin, Eddy Sumarno Siradj Dec 2023

Nitrogen Gas Quenching Pressure Effect On Bs S155 Alloy Steel In Vacuum Furnace, Agus Mulyadi Hasanudin, Eddy Sumarno Siradj

Journal of Materials Exploration and Findings

The production of metal and alloy products requires the use of heat treatment, when during the heat treatment process, quenching is a crucial step. The quenching medium can be anything from water, a salt bath, oil, air and gas. In a vacuum furnace, pressurized gas, most frequently nitrogen (N2) gas, serves as one of the quenching mediums. One of the drawbacks of the quenching process is the distortion and dimensional change of the parts. This paper aims to investigate the influence of nitrogen gas quenching pressure on the distortion and dimensional change of aerospace actuator gear planet parts …


Stability Of Non-Centrosymmetric Phases In Tetra-Coordinated Of Ldtm Intercalates, A. S. Shkvarin, M.S. Postnikov, S. V. Pryanichnikov, A. N. Titov Dec 2023

Stability Of Non-Centrosymmetric Phases In Tetra-Coordinated Of Ldtm Intercalates, A. S. Shkvarin, M.S. Postnikov, S. V. Pryanichnikov, A. N. Titov

Eurasian Journal of Physics and Functional Materials

On the basis of comparison of temperature dependences of lattice parameters of CuCrSe2 and Cu0.5ZrSe2 in the temperature region including transition between phases with centrosymmetric and noncentrosymmetric distribution of copper on positions tetrahedrally coordinated by selenium. It is concluded that the critical factor that ensures the stability of the non- centrosymmetric copper distribution is the covalent interaction between copper and selenium sublattices. This effect is not related to the anisotropy of the elastic constants of the lattice and can be observed in other layered structures with copper tetrahedrally coordinated by chalcogen.


Production Of Zno Thin Films Used In Solar Cell With A Sol-Gel Homemade Dip Coater Technique And Investigated Of Their Structural, Morphological And Optical Properties, Z. Gã¼Ltekin, C. Akay, N. A. Gã¼Ltekin, M. Alper Dec 2023

Production Of Zno Thin Films Used In Solar Cell With A Sol-Gel Homemade Dip Coater Technique And Investigated Of Their Structural, Morphological And Optical Properties, Z. Gã¼Ltekin, C. Akay, N. A. Gã¼Ltekin, M. Alper

Eurasian Journal of Physics and Functional Materials

We designed a homemade dip coater controlled by an Arduino microcontroller to produce semiconductor metal oxide films such as ZnO, CoO, and NiO. The developed device was successfully used to deposit ZnO film on a glass substrate. The structural, surface, and optical properties of the film were investigated. XRD patterns showed that the film is predominantly a hexagonal wurtzite crystalline structure. Scanning electron microscopy (SEM) images showed that the ZnO film was uniformly and homogeneously coated on the glass substrate. EDX analysis confirmed the presence of Zn and O in the film structure. Optical characterization by UV-visible spectrometry showed that …


Scanning Tunneling Spectroscopy Of Homooligonucleotides, T. Sharipov, R. Garafutdinov, A. Mishra, S. Santer, R. Shaikhitdinov, M. Balapanov, R. Bakhtizin Dec 2023

Scanning Tunneling Spectroscopy Of Homooligonucleotides, T. Sharipov, R. Garafutdinov, A. Mishra, S. Santer, R. Shaikhitdinov, M. Balapanov, R. Bakhtizin

Eurasian Journal of Physics and Functional Materials

Short single-stranded DNA molecules of two types, consisting of dC nucleotides only or dA nucleotides only, were immobilized onto the surface of mica and silver substrates and studied by scanning probe microscopy methods. Geometric dimensions of the studied objects were determined. The currentvoltage curves of d(A)12 and d(C)12 oligonucleotides were measured. Their differential electrical resistances were estimated and compared with each other.


Characterization And Luminescence Dynamics Of Mgf2:W Ceramics, A.V. Strelkova, V. M. Lisitsyn, L. A. Lisitsyna, T.A. Koketai, D. A. Mussakhanov, Zh.T. Karipbayev, A. M. Zhunusbekov Dec 2023

Characterization And Luminescence Dynamics Of Mgf2:W Ceramics, A.V. Strelkova, V. M. Lisitsyn, L. A. Lisitsyna, T.A. Koketai, D. A. Mussakhanov, Zh.T. Karipbayev, A. M. Zhunusbekov

Eurasian Journal of Physics and Functional Materials

This study delves into the synthesis and characterization of luminescent ceramics based on tungstenactivated magnesium fluoride (MgF2) complemented with varying concentrations of lithium hydroxide (LiOH). Utilizing a distinctive sintering process conducted in an open-air milieu under robust radiation conditions, we successfully synthesized a series of tungsten-activated ceramics. Study revealed that the resultant ceramics prominently display luminescent properties, which can be excited by UV radiation in the spectrum of 200-300 nm, as well as by high-energy electron fluxes. The spectral characteristics of these ceramics, in terms of band position, half-width, and excitation spectra, are strikingly analogous to those observed …


Study Of The Dependence Of The Degree Of Disordering Of The Surface Layers Of Si(111) And Ge(111) Single Crystals Upon Bombardment With Low-Energy Ions, B. E. Umirzakov, I. R. Bekpulatov, G. T. Imanova, I. Kh. Turapov, J. M. Jumaev Dec 2023

Study Of The Dependence Of The Degree Of Disordering Of The Surface Layers Of Si(111) And Ge(111) Single Crystals Upon Bombardment With Low-Energy Ions, B. E. Umirzakov, I. R. Bekpulatov, G. T. Imanova, I. Kh. Turapov, J. M. Jumaev

Eurasian Journal of Physics and Functional Materials

In the presented article, samples were studied using Auger electron spectroscopy, recording the angular dependences of the coefficient of elastically reflected electrons h, and spectroscopy of elastically reflected electrons. A change in the composition and degree of disorder of the surface layers of Si (111) was detected when bombarded with Ar+ and K+ ions with a change in energy E0 ∼ from 1 to 10 keV and ion dose from ∼ 1013 to 1017 cm−2. It was found that although the Ar and K atoms have the same masses, at the same ion energies, …


Effect Of Electron Irradiation On Mechanical, Tribological And Thermal Properties Of Polytetrafluoroethylene, K. D. Ormanbekov, B. K. Rakhadilov, A. Zh. Zhassulan, N. E. Mukhamedov, A. B. Shynarbek, N. M. Magazov Dec 2023

Effect Of Electron Irradiation On Mechanical, Tribological And Thermal Properties Of Polytetrafluoroethylene, K. D. Ormanbekov, B. K. Rakhadilov, A. Zh. Zhassulan, N. E. Mukhamedov, A. B. Shynarbek, N. M. Magazov

Eurasian Journal of Physics and Functional Materials

The article presents the study results of the electron irradiation effect on the mechanical, tribological and thermal properties of polytetrafluoroethylene (PTFE). The results allow a better understanding of the processes occurring in the structure of PTFE under irradiation and reveal potential applications of the modified material with improved tribological characteristics, high thermal resistance and mechanical strength. In this work the samples were tested for wear resistance and thermal stability. It was found that the effect of electron irradiation leads to a significant increase in the microhardness of the material by 1.5 times compared to the initial state. However, degradation of …


Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman Dec 2023

Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman

Electronic Theses and Dissertations

The use of metal-oxide nanoparticles adsorbents is limited to fixed-bed columns in industrial-scale water treatment applications. This limitation is commonly attributed to the tendency of nanoparticles to aggregate, the use of non-sustainable and inefficient polymeric resins as supporting materials, or a lack of adsorption capacity. Foams and aerogels derived from cellulose nanomaterials have unique characteristics, such as high porosity and low density, which enables their use in a variety of environmental applications, including water treatment. However, the overall use of cellulose nanomaterial-based foams in various environmental sectors is limited due to the high cost of production associated with time- and …


Atomic-Level Mechanisms Of Fast Relaxation In Metallic Glasses, Leo W. Zella Dec 2023

Atomic-Level Mechanisms Of Fast Relaxation In Metallic Glasses, Leo W. Zella

Doctoral Dissertations

Glasses are ubiquitous in daily life and have unique properties which are a consequence of the underlying disordered structure. By understanding the fundamental processes that govern these properties, we can modify glasses for desired applications. Key to understanding the structure-dynamics relationship in glasses is the variety of relaxation processes that exist below the glass transition temperature. Though these relaxations are well characterized with macroscopic experimental techniques, the microscopic nature of these relaxations is difficult to elucidate with experimental tools due to the requirements of timescale and spatial resolution. There remain many questions regarding the microscopic nature of relaxation in glass …