Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

PDF

University of Nevada, Las Vegas

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 219

Full-Text Articles in Physical Sciences and Mathematics

Development And Characterization Of Lead & Lead-Free Perovskite Solar Cell Materials, Rubaiya Murshed Aug 2023

Development And Characterization Of Lead & Lead-Free Perovskite Solar Cell Materials, Rubaiya Murshed

UNLV Theses, Dissertations, Professional Papers, and Capstones

In recent years, perovskite photovoltaic technology has offered enormous viability and dimensionality in solar cell research. As a light-harvesting active layer, Perovskite generated remarkable development in device efficiency of 25.7% for the single-junction solar cell, and over 33% for the perovskite/silicon tandem solar cell. Also, perovskite-perovskite tandem solar cell (also called all-perovskite tandem solar cell) shows great potential in device performance and achieved a power conversion efficiency (PCE) of 26.4%. Transitioning photovoltaic technology from the laboratory to commercial products, high PCE, low cost, long lifetime, and low toxicity are some of the critical factors to consider during material selection. Pb-halide …


Spectroscopic Studies On Silicon And Chalcopyrite Materials For Solar Energy Applications, Amandee Hua May 2023

Spectroscopic Studies On Silicon And Chalcopyrite Materials For Solar Energy Applications, Amandee Hua

UNLV Theses, Dissertations, Professional Papers, and Capstones

In this dissertation, silicon-based materials for photovoltaics and chalcopyrite-based materials for photoelectrochemical water splitting are investigated using various spectroscopic and microscopic techniques. Although silicon dominates the photovoltaic market, further improvement can be made by using an alternative low temperature passivation approach. Currently, thermally grown SiO2 passivation is commonly used for silicon solar cells. However, this technique requires high processing temperatures (>800 °C), which increases the thermal budget, potentially decreases the bulk quality of Si, and can lead to difficulties in implementing in production lines. Here, a S-based passivation approach is studied that require lower processing temperatures of ~550 °C. …


Metastability And Degradation In Cu(In,Ga)Se2 Thin-Film Solar Cells, Mohsen Jahandardoost May 2023

Metastability And Degradation In Cu(In,Ga)Se2 Thin-Film Solar Cells, Mohsen Jahandardoost

UNLV Theses, Dissertations, Professional Papers, and Capstones

Cu(In,Ga)(S,Se)2 or CIGS is a thin-film semiconductor that has shown a device efficiency of 23.35% and 24.2% for single-junction and perovskite/CIGS tandem solar cells, respectively. CIGS offers promising properties such as tunable bandgap and ease of processing making them great candidates for thin-film tandem devices. However, knowledge of the effect of material defects, buffer materials, and post-deposition treatment (PDT) on degradation and metastability behavior in these devices is not well understood.In this dissertation, metastability and long-term degradation of CIGS thin-film solar cells have been investigated under combinatorial stress factors of heat, light, and voltage bias to systematically understand the effect …


Towards The Electronic Response Of Carbon-Based Van Der Waals Heterostructures In A Diamond Anvil Cell, George Thomas Foskaris Dec 2022

Towards The Electronic Response Of Carbon-Based Van Der Waals Heterostructures In A Diamond Anvil Cell, George Thomas Foskaris

UNLV Theses, Dissertations, Professional Papers, and Capstones

The nanoscale regime of materials has been at the forefront of research and interest in condensed matter physics for many years. In a merger of the fields of two-dimensional (2D) materials and high pressure physics, we present an investigation of the electronic response of carbon-based, van der Waals (vdW) heterostructures in a diamond anvil cell (DAC). Combining these fields presents us with the ability to study the characteristics of such systems both optically, and through electrical transport. Properties such as conductance, band structure, and layer number are considered. The samples in this study are assembled using exfoliation and stacking techniques …


An Approach For Material Model Identification Of A Composite Coating Using Micro-Indentation And Multi-Scale Simulations, Pouya Shojaei, Riccardo Scazzosi, Mohamed Trabia, Brendan O’Toole, Marco Giglio, Xing Zhang, Yiliang Liao, Andrea Manes Jan 2022

An Approach For Material Model Identification Of A Composite Coating Using Micro-Indentation And Multi-Scale Simulations, Pouya Shojaei, Riccardo Scazzosi, Mohamed Trabia, Brendan O’Toole, Marco Giglio, Xing Zhang, Yiliang Liao, Andrea Manes

Mechanical Engineering Faculty Research

While deposited thin film coatings can help enhance surface characteristics such as hardness and friction, their effective incorporation in product design is restricted by the limited understand-ing of their mechanical behavior. To address this, an approach combining micro-indentation and meso/micro-scale simulations was proposed. In this approach, micro-indentation testing was conducted on both the coating and the substrate. A meso-scale uniaxial compression finite element model was developed to obtain a material model of the coating. This material model was incorporated within an axisymmetric micro-scale model of the coating to simulate the indentation. The proposed approach was applied to a Ti/SiC metal …


A Hyperelastic Porous Media Framework For Ionic Polymer-Metal Composites And Characterization Of Transduction Phenomena Via Dimensional Analysis And Nonlinear Regression, Zakai J. Olsen May 2021

A Hyperelastic Porous Media Framework For Ionic Polymer-Metal Composites And Characterization Of Transduction Phenomena Via Dimensional Analysis And Nonlinear Regression, Zakai J. Olsen

UNLV Theses, Dissertations, Professional Papers, and Capstones

Ionic polymer-metal composites (IPMC) are smart materials that exhibit large deformation in response to small applied voltages, and conversely generate detectable electrical signals in response to mechanical deformations. The study of IPMC materials is a rich field of research, and an interesting intersection of material science, electrochemistry, continuum mechanics, and thermodynamics. Due to their electromechanical and mechanoelectrical transduction capabilities, IPMCs find many applications in robotics, soft robotics, artificial muscles, and biomimetics. This study aims to investigate the dominating physical phenomena that underly the actuation and sensing behavior of IPMC materials. This analysis is made possible by developing a new, hyperelastic …


Two New Finite Element Schemes And Their Analysis For Modeling Of Wave Propagation In Graphene, Jichun Li Dec 2020

Two New Finite Element Schemes And Their Analysis For Modeling Of Wave Propagation In Graphene, Jichun Li

Mathematical Sciences Faculty Research

© 2020 The Author(s) In this paper, we investigate a system of governing equations for modeling wave propagation in graphene. Compared to our previous work (Yang et al., 2020), here we re-investigate the governing equations by eliminating two auxiliary unknowns from the original model. A totally new stability for the model is established for the first time. Since the finite element scheme proposed in Yang et al. (2020) is only first order in time, here we propose two new schemes with second order convergence in time for the simplified modeling equations. Discrete stabilities inheriting exactly the same form as the …


Developments Of Machine Learning Potentials For Atomistic Simulations, Howard Yanxon Dec 2020

Developments Of Machine Learning Potentials For Atomistic Simulations, Howard Yanxon

UNLV Theses, Dissertations, Professional Papers, and Capstones

Atomistic modeling methods such as molecular dynamics play important roles in investigating time-dependent physical and chemical processes at the microscopic level. In the simulations, energy and forces, sometimes including stress tensor, need to be recalculated iteratively as the atomic configuration evolves. Consequently, atomistic simulations crucially depend on the accuracy of the underlying potential energy surface. Modern quantum mechanical modeling based on density functional theory can consistently generate an accurate description of the potential energy surface. In most cases, molecular dynamics simulations based on density functional theory suffer from highly demanding computational costs. On the other hand, atomistic simulations based on …


Chemical And Electronic Surface Structure Of Chalcopyrite-Based Thin Films For Solar Water Splitting, James C. Carter May 2020

Chemical And Electronic Surface Structure Of Chalcopyrite-Based Thin Films For Solar Water Splitting, James C. Carter

UNLV Theses, Dissertations, Professional Papers, and Capstones

In recent years, various thin film solar devices have reached markedly high efficiencies on both the laboratory and large area scale. To further evaluate their potential, and help drive device optimization of efficient solar devices, a detailed understanding of the chemical and electronic structure of the surfaces and interfaces is required. It is these interfaces that play a pivotal role in dictating aspects of device performance. Chalcopyrite-based materials, such as Cu(In,Ga)S2 (CIGS) are regarded as one of the most promising absorber materials for use in highly efficient solar devices. In the context of photoelectrochemical (PEC) hydrogen generation, the tunability of …


On-Chip Terahertz Modulation And Emission With Integrated Graphene Junctions, Joshua O. Island, Peter Kissin, Jacob Schalch, Xiaomeng Cui, Sheikh Rubaiat Ui Haque, Alex Potts, Takashi Taniguchi, Kanji Watanabe, Richard D. Averitt, Andrea F. Young Apr 2020

On-Chip Terahertz Modulation And Emission With Integrated Graphene Junctions, Joshua O. Island, Peter Kissin, Jacob Schalch, Xiaomeng Cui, Sheikh Rubaiat Ui Haque, Alex Potts, Takashi Taniguchi, Kanji Watanabe, Richard D. Averitt, Andrea F. Young

Physics & Astronomy Faculty Research

The efficient modulation and control of ultrafast signals on-chip is of central importance in terahertz (THz) communications and a promis- ing route toward sub-diffraction limit THz spectroscopy. Two-dimensional (2D) materials may provide a platform for these endeavors. We explore this potential, integrating high-quality graphene p–n junctions within two types of planar transmission line circuits to modulate and emit picosecond pulses. In a coplanar strip line geometry, we demonstrate the electrical modulation of THz signal transmission by 95%. In a Goubau waveguide geometry, we achieve complete gate-tunable control over THz emission from a photoexcited graphene junction. These studies inform the development …


Pressure Driven Electronic Band Gap Engineering In Tin(Iv)-O,N Compounds, Daniel Thomas Sneed Dec 2019

Pressure Driven Electronic Band Gap Engineering In Tin(Iv)-O,N Compounds, Daniel Thomas Sneed

UNLV Theses, Dissertations, Professional Papers, and Capstones

The intrinsic link between long-range order, coordination geometry, and the electronic properties of a system must be understood in order to tailor function-specific materials. Although material properties are typically tailored using chemical dopants, such methods can cause irreversible changes to the structure, limiting the range of functionality. The application of high pressure may provide an alternative “clean” method to tune the electronic properties of semiconducting materials by tailoring their defect density and structure.

We have explored a number of optoelectronic relevant materials with promising characteristics, specifically Sn-(O,N) compounds which have been predicted to undergo pressure-mediated opening of their optical band …


Modifications Of The Cztse/Mo Back-Contact Interface By Plasma Treatments, Wenjin Chen, Teoman Taskesen, David Nowak, Ulf Mikolajczak, Mohamed H. Sayed, Devendra Pareek, Jorg Ohland, Thomas Schnabel, Erik Ahlswede, Dirk Hauschild, Lothar Weinhardt, Clemens Heske, Jurgen Parisi, Levent Gutay Aug 2019

Modifications Of The Cztse/Mo Back-Contact Interface By Plasma Treatments, Wenjin Chen, Teoman Taskesen, David Nowak, Ulf Mikolajczak, Mohamed H. Sayed, Devendra Pareek, Jorg Ohland, Thomas Schnabel, Erik Ahlswede, Dirk Hauschild, Lothar Weinhardt, Clemens Heske, Jurgen Parisi, Levent Gutay

Chemistry and Biochemistry Faculty Research

Molybdenum (Mo) is the most commonly used back-contact material for copper zinc tin selenide (CZTSe)-based thin-film solar cells. For most fabrication methods, an interfacial molybdenum diselenide (MoSe2) layer with an uncontrolled thickness is formed, ranging from a few tens of nm up to ≈1 μm. In order to improve the control of the back-contact interface in CZTSe solar cells, the formation of a MoSe2 layer with a homogeneous and defined thickness is necessary. In this study, we use plasma treatments on the as-grown Mo surface prior to the CZTSe absorber formation, which consists of the deposition of stacked metallic layers …


Equation Of State Of H2o Ice Using Melt-Recrystallization, Zachary Michael Grande May 2019

Equation Of State Of H2o Ice Using Melt-Recrystallization, Zachary Michael Grande

UNLV Theses, Dissertations, Professional Papers, and Capstones

The recent surge in exoplanet discoveries due to advancements in astrophysical technology and analysis has brought the reliability of early equation of state measurements into question as they are the limiting factor when modeling composition of these planets. H2O content is among the most important for the search of habitable planets as well as in understanding planetary dynamics and atmosphere formation. Over the last three decades the equation of state of H2O has been investigated with various techniques but, has suffered from anisotropic strain and poor powder statistics resulting in a large discrepancy in equation of state fits. At pressures …


Optimization Of Useful Hard X-Ray Photochemistry, David Lewis Goldberger Dec 2018

Optimization Of Useful Hard X-Ray Photochemistry, David Lewis Goldberger

UNLV Theses, Dissertations, Professional Papers, and Capstones

X-ray induced damage is generally considered a nuisance, but in the field of Useful Hard X-ray Photochemistry we harness the highly ionizing and penetrating properties of hard X-rays (> 7 keV) to initiate novel photochemical decomposition and synthesis at ambient and extreme conditions. Preliminary experiments suggest that the energy of irradiating photons and the sample pressure play roles in determining the nature of X-ray induced damage. Here, we present the X-ray energy dependence of damage induced in strontium oxalate, strontium nitrate, and barium nitrate, as well as the pressure dependence of X-ray induced damage of strontium oxalate. Our results indicate …


A Novel Approach To Analyzing Strain Heterogeneity In Polycrystalline Quartz Specimens Deformed At High Pressure And Temperature, Nolan Ambrose Regis May 2018

A Novel Approach To Analyzing Strain Heterogeneity In Polycrystalline Quartz Specimens Deformed At High Pressure And Temperature, Nolan Ambrose Regis

UNLV Theses, Dissertations, Professional Papers, and Capstones

Rheological studies of rocks and minerals allow researchers to study the grain-scale deformation mechanisms that govern large-scale geologic processes from mountain building to mantle mixing. Deforming rock samples with high pressure and temperature apparatuses similar to the Griggs piston cylinder apparatus allows us to simulate deformation at depth. However, many apparatuses are limited to “cook-and-look” analysis and require modeling techniques to determine the evolution of deformation patterns found in experimental samples. A previous study used two-dimensional finite element models to analyze the development of stress and strain patterns in polycrystalline rocks. The study suggested rhythmic patterns in deformed rocks develop …


Controlled Electrochemical Reduction Of Gold And Palladium Metal Precursors In Polyaniline, Nicole Goodwin Dec 2017

Controlled Electrochemical Reduction Of Gold And Palladium Metal Precursors In Polyaniline, Nicole Goodwin

UNLV Theses, Dissertations, Professional Papers, and Capstones

Polyaniline (PANI) has been extensively studied due to its unique electrochemical properties. The conjugated polymer is conductive with high chemical stability below 100°C, mechanical strength, and large surface area. The applications of PANI have included chemical sensing, corrosion inhibition coatings, light emitting diode and as a substrate for metal composite catalysts. Both chemical and electrochemical methods have been developed and utilized in the synthesis of PANI/metal composites. The simultaneous reduction of aniline and metal precursor produces a composite of PANI encapsulated metal, reducing the active surface area available for catalysis. Alternatively, chemical reduction of the metal precursor into preformed PANI …


Surface And Interface Characterization Of Solution-Processed Metal Oxides And Pedot:Pss Using Photoelectron Spectroscopy, Lynette M. Kogler Dec 2017

Surface And Interface Characterization Of Solution-Processed Metal Oxides And Pedot:Pss Using Photoelectron Spectroscopy, Lynette M. Kogler

UNLV Theses, Dissertations, Professional Papers, and Capstones

Solution-processed materials are appealing for use in printable electronics as a means to lower production costs, but precise control of the process is crucial for achieving the desired properties in the final materials and their interfaces. Electronic interface properties depend on both the involved materials and their fabrication processes, impacting the development and commercialization of these materials. Analyzing the chemical and electronic structure of these materials, particularly at the surfaces and interfaces, is important not only for insuring that the materials have the desired properties, but also for understanding the effects of the fabrication process and how to modify properties …


Forcing Cesium Into Higher Oxidation States Via Useful Hard X-Ray Induced Chemistry At Extreme Conditions, Daniel Thomas Sneed Aug 2016

Forcing Cesium Into Higher Oxidation States Via Useful Hard X-Ray Induced Chemistry At Extreme Conditions, Daniel Thomas Sneed

UNLV Theses, Dissertations, Professional Papers, and Capstones

Recent theoretical work published in Nature Chemistry postulates the existence of cesium in high oxidation states when bonding with fluorine. It is thus predicted to behave as a p-block element (such as xenon) at pressures above 5 GPa. At these pressures, fluorine atoms may bond with the inner p-shell electrons forming CsFn, where n may vary from 2 up to 6; thus the oxidation state of Cs may change up to 6+. My research focused on physically synthesizing these compounds and to verify that, given the right conditions, bonding doesn't only occur with valence electrons, but with the inner p-shell …


High-Pressure Properties Of Several Narrow Bandgap Semiconductors From First-Principles Calculations, Andrew Michael Alvarado May 2016

High-Pressure Properties Of Several Narrow Bandgap Semiconductors From First-Principles Calculations, Andrew Michael Alvarado

UNLV Theses, Dissertations, Professional Papers, and Capstones

The electronic, thermodynamic, and structural properties of three semiconducting materials, ZnO, InN, and PbS, at high pressure are investigated utilizing first-principles calculations based on density function theory. The first two systems, ZnO and InN, crystalize as hexagonal structures at ambient conditions and transition to a cubic structure at higher pressures. The last system, PbS, is cubic at ambient conditions, but transitions to an orthorhombic structure at higher pressure. At ambient conditions, these materials are well known semiconductors with vast amount of research and a variety of wide ranging applications in electrical devices. However, there is a lack of understanding of …


Impedance Spectroscopy Studies Of Yttria Stabilized Zirconia Under Extreme Conditions, Quinlan Blaine Smith May 2016

Impedance Spectroscopy Studies Of Yttria Stabilized Zirconia Under Extreme Conditions, Quinlan Blaine Smith

UNLV Theses, Dissertations, Professional Papers, and Capstones

Yttria Stabilized Zirconia (YSZ) is of interest for many industries. Varying amounts of Yttria (Y2O3) can be doped into Zirconia (ZrO2) to create materials with specific characteristics. For instance, 3mol% YSZ (3YSZ) is known to be a super hard material and is used as a coating on drill tips and as an abrasive. Eight mol% YSZ (8YSZ) is commonly used as a solid electrolyte in Solid Oxide Fuel Cells because of its good ionic conducting abilities and stability at high temperatures. In this thesis project, a novel experimental setup was created and used to study the ionic conductivity of (3 …


Chemical And Electronic Structure Of Surfaces And Interfaces In Cadmium Telluride Based Photovoltaic Devices, Douglas Arthur Duncan Dec 2015

Chemical And Electronic Structure Of Surfaces And Interfaces In Cadmium Telluride Based Photovoltaic Devices, Douglas Arthur Duncan

UNLV Theses, Dissertations, Professional Papers, and Capstones

The surface and interface properties are of the upmost importance in the understanding, optimization, and application for photovoltaic devices. Often the chemical, electronic, and morphological properties of the films are empirically optimized, however when progress slows, a fundamental understanding of these properties can lead to breakthroughs. In this work, surfaces and interfaces of solar cell-relevant films are probed with a repertoire of X-ray analytical and microanalysis techniques including X-ray photoelectron (XPS), X-ray excited Auger electron (XAES), X-ray emission (XES) spectroscopies, and atomic force (AFM) and scanning electron (SEM) microscopies.

Silicon-based devices currently dominate the solar market, which is rather inflexible …


Structure And Optical Properties Of Transition Metal Dichalcogenides (Tmds) – Mx2 (M = Mo, W & X = S, Se) Under High Pressure And High Temperature Conditions, Nirup Reddy Bandaru Aug 2015

Structure And Optical Properties Of Transition Metal Dichalcogenides (Tmds) – Mx2 (M = Mo, W & X = S, Se) Under High Pressure And High Temperature Conditions, Nirup Reddy Bandaru

UNLV Theses, Dissertations, Professional Papers, and Capstones

Layered structured materials such as transition metal dichalcogenides (TMDs) have gained immense interest in recent times due to their exceptional structural, electrical and optical properties. Recent studies show semiconducting TMDs such as MX2 (M= Mo, W & X = S, Se) could be used as potential shock absorbing material, which has resulted in extensive studies on structural stability of these materials under the influence of high pressure. Understanding the structural stability of transition metal dichalcogenides (TMDs) such as MoS2, MoSe2, WS2, and WSe2 under high pressure has been very challenging due to contradicting observations and interpretations reported in the …


High Pressure Behavior Of Mullite-Type Oxides: Phase Transitions, Amorphization, Negative Linear Compressibility And Microstructural Implications, Patricia Kalita May 2015

High Pressure Behavior Of Mullite-Type Oxides: Phase Transitions, Amorphization, Negative Linear Compressibility And Microstructural Implications, Patricia Kalita

UNLV Theses, Dissertations, Professional Papers, and Capstones

Even though mullite occurs rarely in nature, it is perhaps one of the most important phases in both traditional and advanced ceramics. Existing and emerging applications of mullite and mullite-type materials include: high-temperature composites, aerospace materials, ballistic shielding for military applications and even non-linear optical materials. There are many uncertainties regarding the basic physical properties of mullite-type materials, particularly in terms of their high-pressure structural stability and mechanical behavior that are important to address for emerging applications of mullites as engineering materials. This work is the first reported comprehensive investigation of the high –pressure structural behavior of several different mullites …


Spectroscopic Investigation Of The Chemical And Electronic Properties Of Chalcogenide Materials For Thin-Film Optoelectronic Devices, Kimberly Horsley Dec 2014

Spectroscopic Investigation Of The Chemical And Electronic Properties Of Chalcogenide Materials For Thin-Film Optoelectronic Devices, Kimberly Horsley

UNLV Theses, Dissertations, Professional Papers, and Capstones

Chalcogen-based materials are at the forefront of technologies for sustainable energy production. This progress has come only from decades of research, and further investigation is needed to continue improvement of these materials.

For this dissertation, a number of chalcogenide systems were studied, which have applications in optoelectronic devices, such as LEDs and Photovoltaics. The systems studied include Cu(In,Ga)Se2 (CIGSe) and CuInSe2 (CISe) thin-film absorbers, CdTe-based photovoltaic structures, and CdTe-ZnO nanocomposite materials. For each project, a sample set was prepared through collaboration with outside institutions, and a suite of spectroscopy techniques was employed to answer specific questions about the system. These …


3d Modeling And Design Optimization Of Rod Shaped Ionic Polymer Metal Composite Actuator, Siul A. Ruiz Aug 2013

3d Modeling And Design Optimization Of Rod Shaped Ionic Polymer Metal Composite Actuator, Siul A. Ruiz

UNLV Theses, Dissertations, Professional Papers, and Capstones

Ionic polymer-metal composites (IPMCs) are some of the most well-known electro-active polymers. This is due to their large deformation provided a relatively low voltage source. IPMCs have been acknowledged as a potential candidate for biomedical applications such as cardiac catheters and surgical probes; however, there is still no existing mass manufacturing of IPMCs. This study intends to provide a theoretical framework which could be used to design practical purpose IPMCs depending on the end users interest.

This study begins by investigating methodologies used to develop quantify the physical actuation of an IPMC in 3-dimensional space. This approach is taken in …


College Of Engineering Senior Design Competition Spring 2013, University Of Nevada, Las Vegas May 2013

College Of Engineering Senior Design Competition Spring 2013, University Of Nevada, Las Vegas

Fred and Harriet Cox Senior Design Competition Projects

Senior Design Experience

Part of every UNLV engineering student's academic experience, the Senior Design project stimulates engineering innovation and entrepreneurship. Each student in their senior year chooses, plans, designs and prototypes a product in this required element of the curriculum. Working in teams, the senior design project encourages students to use everything learned in the engineering and computer design programs to create a practical, real world solution to an engineering challenge.

Beyond the classroom ...

Because of the requirement to work in teams, students also build good communication skills, presentation skills and even business writing skills. They also have to …


Strategic Electronic Property Control Of Self-Assembling Pyrazine-Acenes, Lacie Brownell May 2013

Strategic Electronic Property Control Of Self-Assembling Pyrazine-Acenes, Lacie Brownell

UNLV Theses, Dissertations, Professional Papers, and Capstones

Control of electronic properties in organic semiconductor materials is essential for electro-optical applications such as field-effect transistors, light-emitting diodes, and photovoltaic devices. This work is focused on two systems that highlight different approaches for the manipulation of electronic properties: (I) the development of electron-deficient (n-type) materials by selective lowering of ELUMO and (II) low energy gap materials by controlling both ELUMO and EHOMO

To specifically lower ELUMO, a pyrazine-acene π-platform was extended using electron-withdrawing moieties. These include: pyridine, pyrazine, and benzothiadiazole (system I). From the base pyrazine-acene, the most significant change in ELUMO of …


Solar Cell Design Using Metamaterials, Yang Liu, Yitung Chen, Jichun Li Apr 2013

Solar Cell Design Using Metamaterials, Yang Liu, Yitung Chen, Jichun Li

College of Engineering: Graduate Celebration Programs

Natural structure with simultaneous negative permittivity and permeability has not been discovered yet. However, using specially-designed metal embedded in dielectric bodies can achieve a kind of artificial negative index. This periodic structure which is smaller than the guided wavelength is known as a metamaterial. However, recent designs of metamaterials have some disadvantages when they are used in the application of solar cell. The perfect absorption is only within a narrow band, and for most of the solar spectrum, the absorption is no more than 10%. Here, a new kind of absorber for the solar spectrum has been designed and analyzed, …


Applied Analysis Of Ionic Polymer Metal-Composite Actuators, Siul Ruiz, Benjamin Mead, Woosoon Yim Apr 2013

Applied Analysis Of Ionic Polymer Metal-Composite Actuators, Siul Ruiz, Benjamin Mead, Woosoon Yim

College of Engineering: Graduate Celebration Programs

  • IPMC is a type of smart material called an electroactive polymer
  • Consists of an ionic polymer such as Nafion or Flemion and a conducive metal such as platinum or gold
  • COMSOL multi-physics simulations accurately model the experimental displacement results
  • Optimization performed using the multi-physics model to find the maximum deflection, force, and twisting
  • Using the closed loop control system accurate IPMC tip location can be achieved
  • This control system has been extended to function using a computer mouse as an input


Comparison And Simulation Of Salt-Ceramic Composites For Use In High Temperature Concentrated Solar Power, Lauren Michelle Fossile Dec 2012

Comparison And Simulation Of Salt-Ceramic Composites For Use In High Temperature Concentrated Solar Power, Lauren Michelle Fossile

UNLV Theses, Dissertations, Professional Papers, and Capstones

Due to the inherently intermittent nature of solar energy caused by cloud cover among other sources, thermal storage systems are needed to make solar energy more consistent. This same technology could be used to prolong the daily number of useful hours of solar energy power plants. Salt-ceramic materials are a relatively new prospect for heat storage, but have been researched mostly with magnesium oxide and several different carbonate salts. Salt ceramics are a phase change material where the salt changes phase inside the ceramic structure allowing for the system to use the sensible heat of both materials and the latent …