Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 164

Full-Text Articles in Physical Sciences and Mathematics

The Broad-Lined Type Ic Sn 2012ap And The Nature Of Relativistic Supernovae Lacking A Gamma-Ray Burst Detection, D. Milisavljevic, R. Margutti, J. T. Parrent, A. M. Soderberg, R. A. Fesen Jan 2015

The Broad-Lined Type Ic Sn 2012ap And The Nature Of Relativistic Supernovae Lacking A Gamma-Ray Burst Detection, D. Milisavljevic, R. Margutti, J. T. Parrent, A. M. Soderberg, R. A. Fesen

Dartmouth Scholarship

We present ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from –13 to +272 days past the B-band maximum of –17.4 ± 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v ≈ 20,000 km s–1 that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also …


Cataclysmic Variables In The Superblink Proper Motion Survey, Julie N. Skinner, John R. Thorstensen, Sébastien Lépine Dec 2014

Cataclysmic Variables In The Superblink Proper Motion Survey, Julie N. Skinner, John R. Thorstensen, Sébastien Lépine

Dartmouth Scholarship

We have discovered a new high proper motion cataclysmic variable (CV) in the SUPERBLINK proper motion survey, which is sensitive to stars with proper motions greater than 40 mas yr−1. This CV was selected for follow-up observations as part of a larger search for CVs selected based on proper motions and their near-UV−V and V−Ks colors. We present spectroscopic observations from the 2.4 m Hiltner Telescope at MDM Observatory. The new CVʼs orbital period is near 96 minutes, its spectrum shows the double-peaked Balmer emission lines characteristic of quiescent dwarf novae, and its V magnitude is …


Optical Counterparts Of Two Fermi Millisecond Pulsars: Psr J1301+0833 And Psr J1628–3205, Miao Li, Jules P. Halpern, John R. Thorstensen Oct 2014

Optical Counterparts Of Two Fermi Millisecond Pulsars: Psr J1301+0833 And Psr J1628–3205, Miao Li, Jules P. Halpern, John R. Thorstensen

Dartmouth Scholarship

Using the 1.3 m and 2.4 m Telescopes of the MDM Observatory, we identified the close companions of two eclipsing millisecond radio pulsars that were discovered by the Green Bank Telescope in searches of Fermi Gamma-ray Space Telescope sources, and measured their light curves. PSR J1301+0833 is a black widow pulsar in a 6.5 hr orbit whose companion star is strongly heated on the side facing the pulsar. It varies from R = 21.8 to R > 24 around the orbit. PSR J1628–3205 is a "redback," a nearly Roche-lobe-filling system in a 5.0 hr orbit whose optical modulation in the range …


A Spectroscopic Survey Of Wise -Selected Obscured Quasars With The Southern African Large Telescope, Kevin N. Hainline, Ryan C. Hickox, Christopher M. Carroll, Adam D. Myers Oct 2014

A Spectroscopic Survey Of Wise -Selected Obscured Quasars With The Southern African Large Telescope, Kevin N. Hainline, Ryan C. Hickox, Christopher M. Carroll, Adam D. Myers

Dartmouth Scholarship

We present the results of an optical spectroscopic survey of a sample of 40 candidate obscured quasars identified on the basis of their mid-infrared emission detected by the Wide-Field Infrared Survey Explorer (WISE). Optical spectra for this survey were obtained using the Robert Stobie Spectrograph on the Southern African Large Telescope. Our sample was selected with WISE colors characteristic of active galactic nuclei (AGNs), as well as red optical to mid-IR colors indicating that the optical/UV AGN continuum is obscured by dust. We obtain secure redshifts for the majority of the objects that comprise our sample (35/40), and …


Dark Energy Scaling From Dark Matter To Acceleration, Jannis Bielefeld, Robert R. Caldwell, Eric Linder Aug 2014

Dark Energy Scaling From Dark Matter To Acceleration, Jannis Bielefeld, Robert R. Caldwell, Eric Linder

Dartmouth Scholarship

The dark sector of the Universe need not be completely separable into distinct dark matter and dark energy components. We consider a model of early dark energy in which the dark energy mimics a dark matter component in both evolution and perturbations at early times. Barotropic aether dark energy scales as a fixed fraction, possibly greater than one, of the dark matter density and has vanishing sound speed at early times before undergoing a transition. This gives signatures not only in cosmic expansion but in sound speed and inhomogeneities, and in number of effective neutrino species. Model parameters describe the …


Search For Higgs Shifts In White Dwarfs, Roberto Onofrio, Gary A. Wegner Aug 2014

Search For Higgs Shifts In White Dwarfs, Roberto Onofrio, Gary A. Wegner

Dartmouth Scholarship

We report on a search for differential shifts between electronic and vibronic transitions in carbon-rich white dwarfs BPM 27606 and Procyon B. The absence of differential shifts within the spectral resolution and taking into account systematic effects such as space motion and pressure shifts allows us to set the first upper bound of astrophysical origin on the coupling between the Higgs field and the Kreschmann curvature invariant. Our analysis provides the basis for a more general methodology to derive bounds to the coupling of long-range scalar fields to curvature invariants in an astrophysical setting complementary to the ones available from …


Electron-Ion Equilibrium And Shock Precursors In The Northeast Limb Of The Cygnus Loop, Amber A. Medina, John C. Raymond, Richard J. Edgar, Nelson Caldwell, Robert A. Fesen, Dan Milisavljevic Jul 2014

Electron-Ion Equilibrium And Shock Precursors In The Northeast Limb Of The Cygnus Loop, Amber A. Medina, John C. Raymond, Richard J. Edgar, Nelson Caldwell, Robert A. Fesen, Dan Milisavljevic

Dartmouth Scholarship

We present an observational study using high-resolution echelle spectroscopy of collisionless shocks in the Cygnus Loop supernova remnant. Measured Hα line profiles constrain pre-shock heating processes, shock speeds, and electron-ion equilibration (Te /Ti ). The shocks produce faint Hα emission line profiles, which are characterized by narrow and broad components. The narrow component is representative of the pre-shock conditions, while the broad component is produced after charge transfer between neutrals entering the shock and protons in the post-shock gas, thus reflecting the properties of the post-shock gas. We observe a diffuse Hα region extending about 25 …


A Uv To Mid-Ir Study Of Agn Selection, Sun Mi Chung, Christopher S. Kochanek, Roberto Assef, Michael J. I. Brown, Daniel Stern, Buell T. Jannuzi, Anthony H. Gonzalez, Ryan C. Hickox, John Moustakas Jul 2014

A Uv To Mid-Ir Study Of Agn Selection, Sun Mi Chung, Christopher S. Kochanek, Roberto Assef, Michael J. I. Brown, Daniel Stern, Buell T. Jannuzi, Anthony H. Gonzalez, Ryan C. Hickox, John Moustakas

Dartmouth Scholarship

We classify the spectral energy distributions (SEDs) of 431,038 sources in the 9 deg2 Boötes field of the NOAO Deep Wide-Field Survey (NDWFS). There are up to 17 bands of data available per source, including ultraviolet (GALEX), optical (NDWFS), near-IR (NEWFIRM), and mid-infrared (IRAC and MIPS) data, as well as spectroscopic redshifts for ~20,000 objects, primarily from the AGN and Galaxy Evolution Survey. We fit galaxy, active galactic nucleus (AGN), stellar, and brown dwarf templates to the observed SEDs, which yield spectral classes for the Galactic sources and photometric redshifts and galaxy/AGN luminosities for the extragalactic sources. …


Early-Type Galaxies In The Chandra Cosmos Survey, F. Civano, G. Fabbiano, S. Pellegrini, D.-W. Kim Jun 2014

Early-Type Galaxies In The Chandra Cosmos Survey, F. Civano, G. Fabbiano, S. Pellegrini, D.-W. Kim

Dartmouth Scholarship

We study a sample of 69 X-ray detected early-type galaxies (ETGs), selected from the Chandra COSMOS survey, to explore the relation between the X-ray luminosity of hot gaseous halos (L X, gas) and the integrated stellar luminosity (LK ) of the galaxies, in a range of redshift extending out to z = 1.5. In the local universe, a tight, steep relationship has been established between these two quantities, suggesting the presence of largely virialized halos in X-ray luminous systems. We use well-established relations from the study of local universe ETGs, together with the expected evolution …


Magnetic Inhibition Of Convection And The Fundamental Properties Of Low-Mass Stars. Ii. Fully Convective Main-Sequence Stars, Gregory A. Feiden, Brian Chaboyer Jun 2014

Magnetic Inhibition Of Convection And The Fundamental Properties Of Low-Mass Stars. Ii. Fully Convective Main-Sequence Stars, Gregory A. Feiden, Brian Chaboyer

Dartmouth Scholarship

We examine the hypothesis that magnetic fields are inflating the radii of fully convective main-sequence stars in detached eclipsing binaries (DEBs). The magnetic Dartmouth stellar evolution code is used to analyze two systems in particular: Kepler-16 and CM Draconis. Magneto-convection is treated assuming stabilization of convection and also by assuming reductions in convective efficiency due to a turbulent dynamo. We find that magnetic stellar models are unable to reproduce the properties of inflated fully convective main-sequence stars, unless strong interior magnetic fields in excess of 10 MG are present. Validation of the magnetic field hypothesis given the current generation of …


Obscuration By Gas And Dust In Luminous Quasars, S. M. Usman, S. S. Murray, R. C. Hickox, M. Brodwin Jun 2014

Obscuration By Gas And Dust In Luminous Quasars, S. M. Usman, S. S. Murray, R. C. Hickox, M. Brodwin

Dartmouth Scholarship

We explore the connection between absorption by neutral gas and extinction by dust in mid-infrared (IR) selected luminous quasars. We use a sample of 33 quasars at redshifts 0.7 < z < 3 in the 9 deg^2 Bo\"otes multiwavelength survey field that are selected using Spitzer Space Telescope Infrared Array Camera colors and are well-detected as luminous X-ray sources (with >150 counts) in Chandra observations. We divide the quasars into dust-obscured and unobscured samples based on their optical to mid-IR color, and measure the neutral hydrogen column density N_H through fitting of the X-ray spectra. We find that all subsets of quasars have consistent power law photon indices equal to 1.9 that are uncorrelated with N_H. We classify the quasars as gas-absorbed or gas-unabsorbed if N_H > 10^22 cm^-2 or N_H < 10^22 cm^-2, respectively. Of 24 dust-unobscured quasars in the sample, only one shows clear evidence for significant intrinsic N_H, while 22 have column densities consistent with N_H < 10^22 cm^-2. In contrast, of the nine dust-obscured quasars, six show evidence for intrinsic gas absorption, and three are consistent with N_H < 10^22 cm^-2. We conclude that dust extinction in IR-selected quasars is strongly correlated with significant gas absorption as determined through X-ray spectral fitting. These results suggest that obscuring gas and dust in quasars are generally co-spatial, and confirm the reliability of simple mid-IR and optical photometric techniques for separating quasars based on obscuration.


Gemini Long-Slit Observations Of Luminous Obscured Quasars: Further Evidence For An Upper Limit On The Size Of The Narrow-Line Region, Kevin N. Hainline, Ryan C. Hickox, Jenny E. Greene, Adam D. Myers May 2014

Gemini Long-Slit Observations Of Luminous Obscured Quasars: Further Evidence For An Upper Limit On The Size Of The Narrow-Line Region, Kevin N. Hainline, Ryan C. Hickox, Jenny E. Greene, Adam D. Myers

Dartmouth Scholarship

We examine the spatial extent of the narrow-line regions (NLRs) of a sample of 30 luminous obscured quasars at 0.4 < z < 0.7 observed with spatially resolved Gemini-N GMOS long-slit spectroscopy. Using the [O III] λ5007 emission feature, we estimate the size of the NLR using a cosmology-independent measurement: the radius where the surface brightness falls to 10–15 erg s–1 cm–2 arcsec–2. We then explore the effects of atmospheric seeing on NLR size measurements and conclude that direct measurements of the NLR size from observed profiles are too large by 0.1-0.2 dex on average, as compared to measurements made to best-fit Sérsic or Voigt profiles convolved with the seeing. These data, which span a full order of magnitude in IR luminosity (log (L 8 μm/erg s–1) = 44.4-45.4), …


Transition To Order After Hilltop Inflation, Marcelo Gleiser, Noah Graham Mar 2014

Transition To Order After Hilltop Inflation, Marcelo Gleiser, Noah Graham

Dartmouth Scholarship

We investigate the rich nonlinear dynamics during the end of hilltop inflation by numerically solving the coupled Klein-Gordon-Friedmann equations in an expanding universe. In particular, we search for coherent, nonperturbative configurations that may emerge due to the combination of nontrivial couplings between the fields and resonant effects from the cosmological expansion. We couple a massless field to the inflaton to investigate its effect on the existence and stability of coherent configurations and the effective equation of state at reheating. For parameters consistent with data from the Planck and WMAP satellites, and for a wide range of couplings between the inflaton …


The Acs Survey Of Globular Clusters. Xiii. Photometric Calibration In Comparison With Stetson Standards, Maren Hempel, Ata Sarajedini, Jay Anderson, Antonio Aparicio, Luigi R. Bedin, Brian Chaboyer Mar 2014

The Acs Survey Of Globular Clusters. Xiii. Photometric Calibration In Comparison With Stetson Standards, Maren Hempel, Ata Sarajedini, Jay Anderson, Antonio Aparicio, Luigi R. Bedin, Brian Chaboyer

Dartmouth Scholarship

In this study we compare the photometric data of 34 Milky Way globular clusters, observed within the Advanced Camera for Surveys (ACS) Treasury Program (PI: A. Sarajedini) with the corresponding ground-based data, provided by the Photometric Standard Field Catalogs of Stetson. We focus on the transformation between the Hubble Space Telescope/ACS F606W to V-band and F814W to I-band only. The goal is to assess the validity of the filter transformation equations by Sirianni et al. with respect to their dependence on metallicity, horizontal branch morphology, mass, and integrated (VI) color of the various …


Star Formation And Substructure In Galaxy Clusters, Seth A. Cohen, Ryan C. Hickox, Gary A. Wegner, Maret Einasto, Jaan Vennik Feb 2014

Star Formation And Substructure In Galaxy Clusters, Seth A. Cohen, Ryan C. Hickox, Gary A. Wegner, Maret Einasto, Jaan Vennik

Dartmouth Scholarship

We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey (SDSS). Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 +/- 0.007) is higher than that in single-component clusters (0.175 +/- 0.016) for galaxies with M^0.1_r < -20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2 sigma, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.


Tracing The Evolution Of Active Galactic Nuclei Host Galaxies Over The Last 9 Gyr Of Cosmic Time, A. D. Goulding, W. R. Forman, R. C. Hickox, C. Jones Feb 2014

Tracing The Evolution Of Active Galactic Nuclei Host Galaxies Over The Last 9 Gyr Of Cosmic Time, A. D. Goulding, W. R. Forman, R. C. Hickox, C. Jones

Dartmouth Scholarship

We present the results of a combined galaxy population analysis for the host galaxies of active galactic nuclei (AGN) identified at 0 < z < 1.4 within the Sloan Digital Sky Survey, Boötes, and DEEP2 surveys. We identified AGN in a uniform and unbiased manner at X-ray, infrared, and radio wavelengths. Supermassive black holes undergoing radiatively efficient accretion (detected as X-ray and/or infrared AGN) appear to be hosted in a separate and distinct galaxy population than AGN undergoing powerful mechanically dominated accretion (radio AGN). Consistent with some previous studies, radiatively efficient AGN appear to be preferentially hosted in modest star-forming galaxies, with little dependence on AGN or galaxy luminosity. AGN exhibiting radio-emitting jets due to mechanically dominated accretion are almost exclusively observed in massive, passive galaxies. Crucially, we now provide strong evidence that the observed host-galaxy trends are independent of redshift. In particular, these different accretion-mode AGN have remained as separate galaxy populations throughout the last 9 Gyr. Furthermore, it appears that galaxies hosting AGN have evolved along the same path as galaxies that are not hosting AGN with little evidence for distinctly separate evolution.


Evidence For A Weak Wind From The Young Sun, Brian E. Wood, Hans-Reinhard Müller, Seth Redfield, Eric Edelman Feb 2014

Evidence For A Weak Wind From The Young Sun, Brian E. Wood, Hans-Reinhard Müller, Seth Redfield, Eric Edelman

Dartmouth Scholarship

The early history of the solar wind has remained largely a mystery due to the difficulty of detecting winds around young stars that can serve as analogs for the young Sun. Here we report on the detection of a wind from the 500 Myr old solar analog π1 UMa (G1.5 V), using spectroscopic observations from the Hubble Space Telescope. We detect H I Lyα absorption from the interaction region between the stellar wind and interstellar medium, i.e., the stellar astrosphere. With the assistance of hydrodynamic models of the π1 UMa astrosphere, we infer a wind only half as strong as …


Black Hole Variability And The Star Formation-Active Galactic Nucleus Connection: Do All Star-Forming Galaxies Host An Active Galactic Nucleus?, Ryan C. Hickox, James R. Mullaney, David M. Alexander, Chien-Ting J. Chen, Francesca M. Civano, Andy D. Goulding, Kevin N. Hainline Jan 2014

Black Hole Variability And The Star Formation-Active Galactic Nucleus Connection: Do All Star-Forming Galaxies Host An Active Galactic Nucleus?, Ryan C. Hickox, James R. Mullaney, David M. Alexander, Chien-Ting J. Chen, Francesca M. Civano, Andy D. Goulding, Kevin N. Hainline

Dartmouth Scholarship

We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (100 Myr). This variability can have important consequences for observed correlations. We …


The Halo Occupation Distribution Of X-Ray-Bright Active Galactic Nuclei: A Comparison With Luminous Quasars, Jonathan Richardson, Suchetana Chatterjee, Zheng Zheng, Adam D. Myers, Ryan Hickox Dec 2013

The Halo Occupation Distribution Of X-Ray-Bright Active Galactic Nuclei: A Comparison With Luminous Quasars, Jonathan Richardson, Suchetana Chatterjee, Zheng Zheng, Adam D. Myers, Ryan Hickox

Dartmouth Scholarship

We perform halo occupation distribution (HOD) modeling of the projected two-point correlation function (2PCF) of high-redshift (z~1.2) X-ray-bright active galactic nuclei (AGN) in the XMM-COSMOS field measured by Allevato et al. The HOD parameterization is based on low-luminosity AGN in cosmological simulations. At the median redshift of z~1.2, we derive a median mass of (1.02+0.21/-0.23)x10^{13} Msun/h for halos hosting central AGN and an upper limit of ~10% on the AGN satellite fraction. Our modeling results indicate (at the 2.5-sigma level) that X-ray AGN reside in more massive halos compared to more bolometrically luminous, optically-selected quasars at similar redshift. The modeling …


Magnetic Inhibition Of Convection And The Fundamental Properties Of Low-Mass Stars. I. Stars With A Radiative Core, Gregory A. Feiden, Brian Chaboyer Dec 2013

Magnetic Inhibition Of Convection And The Fundamental Properties Of Low-Mass Stars. I. Stars With A Radiative Core, Gregory A. Feiden, Brian Chaboyer

Dartmouth Scholarship

Magnetic fields are hypothesized to inflate the radii of low-mass stars—defined as less massive than 0.8 M —in detached eclipsing binaries (DEBs). We investigate this hypothesis using the recently introduced magnetic Dartmouth stellar evolution code. In particular, we focus on stars thought to have a radiative core and convective outer envelope by studying in detail three individual DEBs: UV Psc, YY Gem, and CU Cnc. Our results suggest that the stabilization of thermal convection by a magnetic field is a plausible explanation for the observed model-radius discrepancies. However, surface magnetic field strengths required by the models are significantly stronger …


Information-Entropic Stability Bound For Compact Objects: Application To Q-Balls And The Chandrasekhar Limit Of Polytropes, Marcelo Gleiser, Damian Sowinski Nov 2013

Information-Entropic Stability Bound For Compact Objects: Application To Q-Balls And The Chandrasekhar Limit Of Polytropes, Marcelo Gleiser, Damian Sowinski

Dartmouth Scholarship

Spatially-bound objects across diverse length and energy scales are characterized by a binding energy. We propose that their spatial structure is mathematically encoded as information in their momentum modes and described by a measure known as configurational entropy (CE). Investigating solitonic Q-balls and stars with a polytropic equation of state P=Kργ, we show that objects with large binding energy have low CE, whereas those at the brink of instability (zero binding energy) have near maximal CE. In particular, we use the CE to find the critical charge allowing for classically stable Q-balls and the Chandrasekhar limit for white dwarfs (γ=4/3) …


Freezing Out Early Dark Energy, Jannis Bielefeld, W. L. Kimmy Wu, Robert R. Caldwell, Olivier Doré Nov 2013

Freezing Out Early Dark Energy, Jannis Bielefeld, W. L. Kimmy Wu, Robert R. Caldwell, Olivier Doré

Dartmouth Scholarship

A phenomenological model of dark energy that tracks the baryonic and cold dark matter at early times but resembles a cosmological constant at late times is explored. In the transition between these two regimes, the dark energy density drops rapidly as if it were a relic species that freezes out, during which time the equation of state peaks at +1. Such an adjustment in the dark energy density, as it shifts from scaling to potential domination, could be the signature of a trigger mechanism that helps explain the late-time cosmic acceleration. We show that the non-negligible dark energy density at …


The Xmm-Newton Spectrum Of A Candidate Recoiling Supermassive Black Hole: An Elusive Inverted P-Cygni Profile, G. Lanzuisi, F. Civano, S. Marchesi, A. Comastri Nov 2013

The Xmm-Newton Spectrum Of A Candidate Recoiling Supermassive Black Hole: An Elusive Inverted P-Cygni Profile, G. Lanzuisi, F. Civano, S. Marchesi, A. Comastri

Dartmouth Scholarship

We present a detailed spectral analysis of new XMM-Newton data of the source CXOC J100043.1+020637, also known as CID-42, detected in the COSMOS survey at z = 0.359. Previous works suggested that CID-42 is a candidate recoiling supermassive black hole (SMBH) showing also an inverted P-Cygni profile in the X-ray spectra at ~6 keV (rest) with an iron emission line plus a redshifted absorption line (detected at 3σ in previous XMM-Newton and Chandra observations). Detailed analysis of the absorption line suggested the presence of ionized material flowing into the black hole at high velocity. In the …


Spectral Distortion In A Radially Inhomogeneous Cosmology, R. R. Caldwell, N. A. Maksimova Nov 2013

Spectral Distortion In A Radially Inhomogeneous Cosmology, R. R. Caldwell, N. A. Maksimova

Dartmouth Scholarship

The spectral distortion of the cosmic microwave background blackbody spectrum in a radially inhomogeneous space-time, designed to exactly reproduce a ΛCDM expansion history along the past light cone, is shown to exceed the upper bound established by COBE-FIRAS by a factor of approximately 3700. This simple observational test helps uncover a slew of pathological features that lie hidden inside the past light cone, including a radially contracting phase at decoupling and, if followed to its logical extreme, a naked singularity at the radially inhomogeneous big bang.


Optical And X-Ray Studies Of 10 X-Ray-Selected Cataclysmic Binaries, John R. Thorstensen, Jules Halpern Sep 2013

Optical And X-Ray Studies Of 10 X-Ray-Selected Cataclysmic Binaries, John R. Thorstensen, Jules Halpern

Dartmouth Scholarship

We report on ground-based optical observations of 10 cataclysmic binaries that were discovered through their X-ray emission. Time-resolved radial velocity spectroscopy yields unambiguous orbital periods for eight objects and ambiguous results for the remaining two. The orbital periods range from 87 minutes to 9.38 hr. We also obtained time-series optical photometry for six targets, four of which have coherent pulsations. These periods are 1218 s for 1RXS J045707.4+452751, 628 s for AX J1740.2–2903, 477 s for AX J1853.3–0128, and 935 s for IGR J19267+1325. A total of seven of the sources have coherent oscillations in X-rays or optical, indicating that …


A Bayesian Approach To Deriving Ages Of Individual Field White Dwarfs, Erin M. O'Malley, Ted Von Hippel, David A. Van Dyk Aug 2013

A Bayesian Approach To Deriving Ages Of Individual Field White Dwarfs, Erin M. O'Malley, Ted Von Hippel, David A. Van Dyk

Dartmouth Scholarship

We apply a self-consistent and robust Bayesian statistical approach to determine the ages, distances, and zero-age main sequence (ZAMS) masses of 28 field DA white dwarfs (WDs) with ages of approximately 4-8 Gyr. Our technique requires only quality optical and near-infrared photometry to derive ages with <15% uncertainties, generally with little sensitivity to our choice of modern initial-final mass relation. We find that age, distance, and ZAMS mass are correlated in a manner that is too complex to be captured by traditional error propagation techniques. We further find that the posterior distributions of age are often asymmetric, indicating that the standard approach to deriving WD ages can yield misleading results.


Salt Long-Slit Spectroscopy Of Luminous Obscured Quasars: An Upper Limit On The Size Of The Narrow-Line Region?, Kevin N. Hainline, Ryan Hickox, Jenny E. Greene, Adam D. Myers, Nadia L. Zakamska Aug 2013

Salt Long-Slit Spectroscopy Of Luminous Obscured Quasars: An Upper Limit On The Size Of The Narrow-Line Region?, Kevin N. Hainline, Ryan Hickox, Jenny E. Greene, Adam D. Myers, Nadia L. Zakamska

Dartmouth Scholarship

We present spatially resolved long-slit spectroscopy from the Southern African Large Telescope (SALT) to examine the spatial extent of the narrow-line regions (NLRs) of a sample of 8 luminous obscured quasars at 0.10 < z < 0.43. Our results are consistent with an observed shallow slope in the relationship between NLR size and L_[OIII], which has been interpreted to indicate that NLR size is limited by the density and ionization state of the NLR gas rather than the availability of ionizing photons. We also explore how the NLR size scales with a more direct measure of instantaneous AGN power using mid-IR photometry from WISE, which probes warm to hot dust near the central black hole and so, unlike [OIII], does not depend on the properties of the NLR. Using our results as well as samples from the literature, we obtain a power-law relationship between NLR size and L_8micron that is significantly steeper than that observed for NLR size and L_[OIII]. We find that the size of the NLR goes approximately as L^(1/2)_8micron, as expected from the simple scenario of constant-density clouds illuminated by a central ionizing source. We further see tentative evidence for a flattening of the relationship between NLR size and L_8micron at the high luminosity end, and propose that we are seeing a limiting NLR size of 10 - 20 kpc, beyond which the availability of gas to ionize becomes too low. We find that L_[OIII] ~ L_8micron^(1.4), consistent with a picture in which the L_[OIII] is dependent on the volume of the NLR. These results indicate that high-luminosity quasars have a strong effect in ionizing the available gas in a galaxy.


The Fast And Furious Decay Of The Peculiar Type Ic Supernova 2005ek, M. R. Drout, A. M. Soderberg, P. A. Mazzali, J. T. Parrent Aug 2013

The Fast And Furious Decay Of The Peculiar Type Ic Supernova 2005ek, M. R. Drout, A. M. Soderberg, P. A. Mazzali, J. T. Parrent

Dartmouth Scholarship

We present extensive multi-wavelength observations of the extremely rapidly declining Type Ic supernova (SN Ic), SN 2005ek. Reaching a peak magnitude of MR = –17.3 and decaying by ~3 mag in the first 15 days post-maximum, SN 2005ek is among the fastest Type I supernovae observed to date. The spectra of SN 2005ek closely resemble those of normal SN Ic, but with an accelerated evolution. There is evidence for the onset of nebular features at only nine days post-maximum. Spectroscopic modeling reveals an ejecta mass of ~0.3 M that is dominated by oxygen (~80%), while the pseudo-bolometric light …


A Detailed Kinematic Map Of Cassiopeia A'S Optical Main Shell And Outer High-Velocity Ejecta, Dan Milisavljevic, Robert A. Fesen Aug 2013

A Detailed Kinematic Map Of Cassiopeia A'S Optical Main Shell And Outer High-Velocity Ejecta, Dan Milisavljevic, Robert A. Fesen

Dartmouth Scholarship

We present three-dimensional (3D) kinematic reconstructions of optically emitting material in the young Galactic supernova remnant Cassiopeia A (Cas A). These Doppler maps have the highest spectral and spatial resolutions of any previous survey of Cas A and represent the most complete catalog of its optically emitting material to date. We confirm that the bulk of Cas A’s optically bright ejecta populate a torus-like geometry tilted approximately 30◦ with respect to the plane of the sky with a − 4000 to +6000 km s−1 radial velocity asymmetry. Near-tangent viewing angle effects and an inhomogeneous surrounding circumstellar material/ interstellar medium environment …


Distribution Of Plasmoids In Post-Coronal Mass Ejection Current Sheets, L.-J. Guo, A. Bhattacharjee, Y.-M. Huang Jul 2013

Distribution Of Plasmoids In Post-Coronal Mass Ejection Current Sheets, L.-J. Guo, A. Bhattacharjee, Y.-M. Huang

Dartmouth Scholarship

Recently, the fragmentation of a current sheet in the high-Lundquist-number regime caused by the plasmoid instability has been proposed as a possible mechanism for fast reconnection. In this work, we investigate this scenario by comparing the distribution of plasmoids obtained from Large Angle and Spectrometric Coronagraph (LASCO) observational data of a coronal mass ejection event with a resistive magnetohydrodynamic simulation of a similar event. The LASCO/C2 data are analyzed using visual inspection, whereas the numerical data are analyzed using both visual inspection and a more precise topological method. Contrasting the observational data with numerical data analyzed with both methods, we …