Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Nanotechnology

Binding Interactions Of Biologically Relevant Molecules Studied Using Surface-Modified And Nanostructured Surfaces, Palak Sondhi Nov 2023

Binding Interactions Of Biologically Relevant Molecules Studied Using Surface-Modified And Nanostructured Surfaces, Palak Sondhi

Dissertations

This research focuses on the field of surface nanobioscience, wherein different nanosurfaces that will be used as working electrodes in the electrochemical cell are manufactured and surface modified to understand the critical binding interactions between biologically significant molecules like proteins, carbohydrates, small drug molecules, and glycoproteins. This research is essential if we are to determine whether a synthetic molecule can serve as a therapeutic candidate or diagnose a disease in its early stages. In order to fully understand the binding interactions, the study begins with defining some of the fundamental concepts, principles, and analytical tools for biosensing.

Afterwards, we addressed …


Lipopolysaccharide Induced Map Kinase Activation In Raw 264.7 Cells Attenuated By Cerium Oxide Nanoparticles, Vellaisamy Selvaraj, Niraj Nepa, Steven Rogers, Nandini D.P.K. Manne, Ravi K. Arvapalli, Kevin M. Rice, Shinichi Asano, Erin Fankenhanel, J. Y. Ma, Tolou Shokuhfar, Mani Maheshwari, Eric R. Blough Jun 2018

Lipopolysaccharide Induced Map Kinase Activation In Raw 264.7 Cells Attenuated By Cerium Oxide Nanoparticles, Vellaisamy Selvaraj, Niraj Nepa, Steven Rogers, Nandini D.P.K. Manne, Ravi K. Arvapalli, Kevin M. Rice, Shinichi Asano, Erin Fankenhanel, J. Y. Ma, Tolou Shokuhfar, Mani Maheshwari, Eric R. Blough

Mani Maheshwari

High mortality rates are associated with the life threatening disease of sepsis. Improvements in septic patient survivability have failed to materialize with currently available treatments. This article represents data regarding a study published in biomaterials (Vellaisamy et al., Biomaterials, 2015, in press). with the purpose of evaluating whether severe sepsis mortality and associated hepatic dysfunction induced by lipopolysaccharide (LPS) can be prevented by cerium oxide nanoparticles (CeO2NPs) treatment in male Sprague Dawley rats. Here we provide the information about the method and processing of raw data related to our study publish in Biomaterials and Data in Brief (Vellaisamy et al., …


Cerium Oxide Nanoparticles Inhibit Lipopolysaccharide Inducedmap Kinase/Nf-Kb Mediated Severe Sepsis, Mani Maheshwari, Nandini Manne Phd, Shinichi Asano, Eric Blough, Kevin M. Rice, Niraj Nepa,, Erin Fankhanel Jun 2018

Cerium Oxide Nanoparticles Inhibit Lipopolysaccharide Inducedmap Kinase/Nf-Kb Mediated Severe Sepsis, Mani Maheshwari, Nandini Manne Phd, Shinichi Asano, Eric Blough, Kevin M. Rice, Niraj Nepa,, Erin Fankhanel

Mani Maheshwari

The life threatening disease of sepsis is associated with high mortality. Septic patient survivability with currently available treatments has failed to improve. The purpose of this study was to evaluate whether lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction can be prevented by cerium oxide nanoparticles (CeO2NPs) treatment in male Sprague Dawley rats. Here we provide the information about the methods processing of raw data related to our study published in Biomaterials (Selvaraj et al., Biomaterials, 2015, In press) and Data in Brief (Selvaraj et al., Data in Brief, 2015, In Press). The data present here provides confirmation …


Cerium Oxide Nanoparticles Inhibit Lipopolysaccharide Inducedmap Kinase/Nf-Kb Mediated Severe Sepsis, Mani Maheshwari, Nandini Manne Phd, Shinichi Asano, Eric Blough, Kevin M. Rice, Niraj Nepa,, Erin Fankhanel Jul 2017

Cerium Oxide Nanoparticles Inhibit Lipopolysaccharide Inducedmap Kinase/Nf-Kb Mediated Severe Sepsis, Mani Maheshwari, Nandini Manne Phd, Shinichi Asano, Eric Blough, Kevin M. Rice, Niraj Nepa,, Erin Fankhanel

Nandini Manne

The life threatening disease of sepsis is associated with high mortality. Septic patient survivability with currently available treatments has failed to improve. The purpose of this study was to evaluate whether lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction can be prevented by cerium oxide nanoparticles (CeO2NPs) treatment in male Sprague Dawley rats. Here we provide the information about the methods processing of raw data related to our study published in Biomaterials (Selvaraj et al., Biomaterials, 2015, In press) and Data in Brief (Selvaraj et al., Data in Brief, 2015, In Press). The data present here provides confirmation of …


Cerium Oxide Nanoparticles Inhibit Lipopolysaccharide Inducedmap Kinase/Nf-Kb Mediated Severe Sepsis, Mani Maheshwari, Nandini Manne Phd, Shinichi Asano, Eric Blough, Kevin M. Rice, Niraj Nepa,, Erin Fankhanel Jul 2017

Cerium Oxide Nanoparticles Inhibit Lipopolysaccharide Inducedmap Kinase/Nf-Kb Mediated Severe Sepsis, Mani Maheshwari, Nandini Manne Phd, Shinichi Asano, Eric Blough, Kevin M. Rice, Niraj Nepa,, Erin Fankhanel

Kevin M Rice

The life threatening disease of sepsis is associated with high mortality. Septic patient survivability with currently available treatments has failed to improve. The purpose of this study was to evaluate whether lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction can be prevented by cerium oxide nanoparticles (CeO2NPs) treatment in male Sprague Dawley rats. Here we provide the information about the methods processing of raw data related to our study published in Biomaterials (Selvaraj et al., Biomaterials, 2015, In press) and Data in Brief (Selvaraj et al., Data in Brief, 2015, In Press). The data present here provides confirmation of …


Cerium Oxide Nanoparticles Inhibit Lipopolysaccharide Inducedmap Kinase/Nf-Kb Mediated Severe Sepsis, Mani Maheshwari, Nandini Manne Phd, Shinichi Asano, Eric Blough, Kevin M. Rice, Niraj Nepa,, Erin Fankhanel Jul 2017

Cerium Oxide Nanoparticles Inhibit Lipopolysaccharide Inducedmap Kinase/Nf-Kb Mediated Severe Sepsis, Mani Maheshwari, Nandini Manne Phd, Shinichi Asano, Eric Blough, Kevin M. Rice, Niraj Nepa,, Erin Fankhanel

Eric Blough

The life threatening disease of sepsis is associated with high mortality. Septic patient survivability with currently available treatments has failed to improve. The purpose of this study was to evaluate whether lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction can be prevented by cerium oxide nanoparticles (CeO2NPs) treatment in male Sprague Dawley rats. Here we provide the information about the methods processing of raw data related to our study published in Biomaterials (Selvaraj et al., Biomaterials, 2015, In press) and Data in Brief (Selvaraj et al., Data in Brief, 2015, In Press). The data present here provides confirmation of …


Therapeutic Efficacy Of Cerium Oxide Nanoparticles Against Sepsis Induced Multi-Organ Dysfunction Syndrome In Sprague Dawley Rats, Nandini Durga Prasanna Kumar Manne Jun 2017

Therapeutic Efficacy Of Cerium Oxide Nanoparticles Against Sepsis Induced Multi-Organ Dysfunction Syndrome In Sprague Dawley Rats, Nandini Durga Prasanna Kumar Manne

Nandini Manne

Sepsis is a generalized term that signifies the presence of a pathogen in the blood stream to which the body responds by eliciting a systemic inflammatory response. Although sepsis is the leading cause of death in non-coronary intensive care units in United States, there are currently no FDA approved therapeutic drugs to treat this disorder. Cerium oxide nanoparticles (CeO2) have been shown to exhibit anti-oxidant, anti-inflammatory, and anti-bacterial properties both in vitro and in vivo. Whether CeO2 nanoparticles can be used for the treatment of sepsis is currently unclear. To investigate whether CeO2 nanoparticles can be used to treat moderate …


Lipopolysaccharide Induced Map Kinase Activation In Raw 264.7 Cells Attenuated By Cerium Oxide Nanoparticles, Vellaisamy Selvaraj, Niraj Nepa, Steven Rogers, Nandini D.P.K. Manne, Ravi K. Arvapalli, Kevin M. Rice, Shinichi Asano, Erin Fankenhanel, J. Y. Ma, Tolou Shokuhfar, Mani Maheshwari, Eric R. Blough Sep 2015

Lipopolysaccharide Induced Map Kinase Activation In Raw 264.7 Cells Attenuated By Cerium Oxide Nanoparticles, Vellaisamy Selvaraj, Niraj Nepa, Steven Rogers, Nandini D.P.K. Manne, Ravi K. Arvapalli, Kevin M. Rice, Shinichi Asano, Erin Fankenhanel, J. Y. Ma, Tolou Shokuhfar, Mani Maheshwari, Eric R. Blough

Pharmaceutical Science and Research

High mortality rates are associated with the life threatening disease of sepsis. Improvements in septic patient survivability have failed to materialize with currently available treatments. This article represents data regarding a study published in biomaterials (Vellaisamy et al., Biomaterials, 2015, in press). with the purpose of evaluating whether severe sepsis mortality and associated hepatic dysfunction induced by lipopolysaccharide (LPS) can be prevented by cerium oxide nanoparticles (CeO2NPs) treatment in male Sprague Dawley rats. Here we provide the information about the method and processing of raw data related to our study publish in Biomaterials and Data in Brief (Vellaisamy et al., …


Cerium Oxide Nanoparticles Inhibit Lipopolysaccharide Inducedmap Kinase/Nf-Kb Mediated Severe Sepsis, Mani Maheshwari, Nandini Manne Phd, Shinichi Asano, Eric Blough, Kevin M. Rice, Niraj Nepa,, Erin Fankhanel May 2015

Cerium Oxide Nanoparticles Inhibit Lipopolysaccharide Inducedmap Kinase/Nf-Kb Mediated Severe Sepsis, Mani Maheshwari, Nandini Manne Phd, Shinichi Asano, Eric Blough, Kevin M. Rice, Niraj Nepa,, Erin Fankhanel

Pharmaceutical Science and Research

The life threatening disease of sepsis is associated with high mortality. Septic patient survivability with currently available treatments has failed to improve. The purpose of this study was to evaluate whether lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction can be prevented by cerium oxide nanoparticles (CeO2NPs) treatment in male Sprague Dawley rats. Here we provide the information about the methods processing of raw data related to our study published in Biomaterials (Selvaraj et al., Biomaterials, 2015, In press) and Data in Brief (Selvaraj et al., Data in Brief, 2015, In Press). The data present here provides confirmation …


Cerium Oxide Nanoparticles Attenuate Polymicrobial Sepsis Induced Splenic Damage In Male Sprague Dawley Rats, Venkata Vinay Kumar Bandarupalli Jan 2015

Cerium Oxide Nanoparticles Attenuate Polymicrobial Sepsis Induced Splenic Damage In Male Sprague Dawley Rats, Venkata Vinay Kumar Bandarupalli

Theses, Dissertations and Capstones

Sepsis is a serious life threatening medical emergency which, if not treated properly, oftentimes results in organ failure and death. Current sepsis treatment protocols are largely centered on the use of antibiotics and supportive care. Recent studies have suggested that antibiotics fail to be effective for sepsis treatment when administered during hypo-dynamic phase of sepsis that is usually characterized by the presence of a cytokine storm. As such, there is an urgent need to develop novel therapeutic drugs that target the inflammatory cytokines that are secreted as a result of increased reactive oxygen species. Cerium oxide nanoparticles (CeO2) have been …


Therapeutic Efficacy Of Cerium Oxide Nanoparticles Against Sepsis Induced Multi-Organ Dysfunction Syndrome In Sprague Dawley Rats, Nandini Durga Prasanna Kumar Manne Jan 2014

Therapeutic Efficacy Of Cerium Oxide Nanoparticles Against Sepsis Induced Multi-Organ Dysfunction Syndrome In Sprague Dawley Rats, Nandini Durga Prasanna Kumar Manne

Theses, Dissertations and Capstones

Sepsis is a generalized term that signifies the presence of a pathogen in the blood stream to which the body responds by eliciting a systemic inflammatory response. Although sepsis is the leading cause of death in non-coronary intensive care units in United States, there are currently no FDA approved therapeutic drugs to treat this disorder. Cerium oxide nanoparticles (CeO2) have been shown to exhibit anti-oxidant, anti-inflammatory, and anti-bacterial properties both in vitro and in vivo. Whether CeO2 nanoparticles can be used for the treatment of sepsis is currently unclear.

To investigate whether CeO2 nanoparticles can …