Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanotechnology

Lipopolysaccharide Induced Map Kinase Activation In Raw 264.7 Cells Attenuated By Cerium Oxide Nanoparticles, Vellaisamy Selvaraj, Niraj Nepa, Steven Rogers, Nandini D.P.K. Manne, Ravi K. Arvapalli, Kevin M. Rice, Shinichi Asano, Erin Fankenhanel, J. Y. Ma, Tolou Shokuhfar, Mani Maheshwari, Eric R. Blough Sep 2015

Lipopolysaccharide Induced Map Kinase Activation In Raw 264.7 Cells Attenuated By Cerium Oxide Nanoparticles, Vellaisamy Selvaraj, Niraj Nepa, Steven Rogers, Nandini D.P.K. Manne, Ravi K. Arvapalli, Kevin M. Rice, Shinichi Asano, Erin Fankenhanel, J. Y. Ma, Tolou Shokuhfar, Mani Maheshwari, Eric R. Blough

Pharmaceutical Science and Research

High mortality rates are associated with the life threatening disease of sepsis. Improvements in septic patient survivability have failed to materialize with currently available treatments. This article represents data regarding a study published in biomaterials (Vellaisamy et al., Biomaterials, 2015, in press). with the purpose of evaluating whether severe sepsis mortality and associated hepatic dysfunction induced by lipopolysaccharide (LPS) can be prevented by cerium oxide nanoparticles (CeO2NPs) treatment in male Sprague Dawley rats. Here we provide the information about the method and processing of raw data related to our study publish in Biomaterials and Data in Brief (Vellaisamy et al., …


Cerium Oxide Nanoparticles Inhibit Lipopolysaccharide Inducedmap Kinase/Nf-Kb Mediated Severe Sepsis, Mani Maheshwari, Nandini Manne Phd, Shinichi Asano, Eric Blough, Kevin M. Rice, Niraj Nepa,, Erin Fankhanel May 2015

Cerium Oxide Nanoparticles Inhibit Lipopolysaccharide Inducedmap Kinase/Nf-Kb Mediated Severe Sepsis, Mani Maheshwari, Nandini Manne Phd, Shinichi Asano, Eric Blough, Kevin M. Rice, Niraj Nepa,, Erin Fankhanel

Pharmaceutical Science and Research

The life threatening disease of sepsis is associated with high mortality. Septic patient survivability with currently available treatments has failed to improve. The purpose of this study was to evaluate whether lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction can be prevented by cerium oxide nanoparticles (CeO2NPs) treatment in male Sprague Dawley rats. Here we provide the information about the methods processing of raw data related to our study published in Biomaterials (Selvaraj et al., Biomaterials, 2015, In press) and Data in Brief (Selvaraj et al., Data in Brief, 2015, In Press). The data present here provides confirmation …


Cerium Oxide Nanoparticles Attenuate Polymicrobial Sepsis Induced Splenic Damage In Male Sprague Dawley Rats, Venkata Vinay Kumar Bandarupalli Jan 2015

Cerium Oxide Nanoparticles Attenuate Polymicrobial Sepsis Induced Splenic Damage In Male Sprague Dawley Rats, Venkata Vinay Kumar Bandarupalli

Theses, Dissertations and Capstones

Sepsis is a serious life threatening medical emergency which, if not treated properly, oftentimes results in organ failure and death. Current sepsis treatment protocols are largely centered on the use of antibiotics and supportive care. Recent studies have suggested that antibiotics fail to be effective for sepsis treatment when administered during hypo-dynamic phase of sepsis that is usually characterized by the presence of a cytokine storm. As such, there is an urgent need to develop novel therapeutic drugs that target the inflammatory cytokines that are secreted as a result of increased reactive oxygen species. Cerium oxide nanoparticles (CeO2) have been …