Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 40

Full-Text Articles in Nanotechnology

Effect Of Decorating Super Paramagnetic Iron Oxide Nanoparticles With Silver Nanoparticles On Their Magneto-Photo Thermal Heating Efficiency, Anthony Joseph Afful Jan 2023

Effect Of Decorating Super Paramagnetic Iron Oxide Nanoparticles With Silver Nanoparticles On Their Magneto-Photo Thermal Heating Efficiency, Anthony Joseph Afful

All Graduate Theses, Dissertations, and Other Capstone Projects

Cancer treatment is rather dangerous to the body, often involving many secondary effects, including nausea, hair loss, and weight fluctuations. The search for non-invasive, highly efficient, and targetable treatments ameliorates these issues. Super paramagnetic iron oxide nanoparticles (SPIONS) have been used for other medical purposes such as magnetic resonance imaging contrast agent and is being extensively studied as a potential candidate for many cancer therapeutic and diagnostic approaches due to its biocompatibility and superior magnetic properties. When subjected to an external alternating magnetic field SPIONS generate heat mainly due to the friction of the SPIONS against the fluid it is …


Biomedical Applications Of Lanthanide Nanomaterials, For Imaging, Sensing And Therapy, Qize Zhang, Stephen O'Brien, Jan Grimm Jan 2022

Biomedical Applications Of Lanthanide Nanomaterials, For Imaging, Sensing And Therapy, Qize Zhang, Stephen O'Brien, Jan Grimm

Publications and Research

The application of nanomaterials made of rare earth elements within biomedical sciences continues to make significant progress. The rare earth elements, also called the lanthanides, play an essential role in modern life through materials and electronics. As we learn more about their utility, function, and underlying physics, we can contemplate extending their applications to biomedicine. This particularly applies to diagnosis and radiation therapy due to their relatively unique features, such as an ultra-wide Stokes shift in the luminescence, variable magnetism and potentially tunable properties, due to the library of lanthanides available and their multivalent oxidation state chemistry. The ability to …


Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell Jan 2022

Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell

MSU Graduate Theses

Nanomaterials are a relatively new class of materials that have many applications which span a wide host of fields from medical products to consumer products. The possible compositions and forms of nanomaterials are just as varied as the applications. Therefore, a versatile characterization method is needed for researchers and regulators alike to ensure nanomaterials are properly used. Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS) is a functional method that could fill the characterization need in the nanomaterial research field. Using data from both SP-ICP-MS tests and data from literature established characterization methods, the viability of making SP-ICP-MS the standard …


Multifunctional Programmable Self-Assembled Nanoparticles In Nanomedicine, Yoshie Sakamaki Dec 2021

Multifunctional Programmable Self-Assembled Nanoparticles In Nanomedicine, Yoshie Sakamaki

Graduate Theses and Dissertations

Developing methodologies to control the architecture of nanoparticles (NPs) at the atomic level prevents their inhomogeneity and leads to a variety of expected functions. Rationally designed nanoparticles can either be programmed or crystallized structures into pre-determined structures achieving tunable particle pore size and physiochemistry. In this dissertation, two broad classes of multifunctional nanoparticles are developed, metal-organic frameworks and DNA-NP aggregates.

Metal-organic frameworks are a novel class of highly porous crystalline materials built from organic linkers and metal cluster-based secondary building units. However, applications in bioremediation have not been developed very well especially in applications regarding drug delivery systems (DDS). The …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


Zein And Lignin-Based Nanoparticles As Delivery Systems: Pesticide Release And Nanoparticle Health Impact On Soybean Plants, Fallon Polette Salinas Gonzalez Jan 2021

Zein And Lignin-Based Nanoparticles As Delivery Systems: Pesticide Release And Nanoparticle Health Impact On Soybean Plants, Fallon Polette Salinas Gonzalez

LSU Doctoral Dissertations

This research examined the effect of biodegradable, polymeric, lignin-based nanoparticles (LNPs, 113.8±3.4, negatively charged) and zein nanoparticles (ZNP, 141.6±3.9, positively charged) on soybean plant health. The LNPs were synthesized from lignin, covalently linked to poly(lactic-co-glycolic) acid by emulsion evaporation. ZNPs were synthesized by nanoprecipitation. Soybeans grown hydroponically were treated with three concentrations (0.02, 0.2, and 2 mg/ml) of NPs at 28 days after germination. The effect of ZNPs and LNPs on plant health was determined through analysis of root and stem length, chlorophyll concentration, dry biomass of roots and stem, as well as carbon, nitrogen, and micronutrient absorption after 1, …


Raising Dielectric Permittivity Mitigates Dopant-Induced Disorder In Conjugated Polymers, Meenakshi Upadhyaya, Michael Lu-Díaz, Subhayan Samanta, Muhammad Abdullah, Keith Dusoe, Kevin R. Kittilstved, Dhandapani Venkataraman, Zlatan Akšamija Jan 2021

Raising Dielectric Permittivity Mitigates Dopant-Induced Disorder In Conjugated Polymers, Meenakshi Upadhyaya, Michael Lu-Díaz, Subhayan Samanta, Muhammad Abdullah, Keith Dusoe, Kevin R. Kittilstved, Dhandapani Venkataraman, Zlatan Akšamija

Electrical and Computer Engineering Faculty Publication Series

Conjugated polymers need to be doped to increase charge carrier density and reach the electrical conductivity necessary for electronic and energy applications. While doping increases carrier density, Coulomb interactions between the dopant molecules and the localized carriers are poorly screened, causing broadening and a heavy tail in the electronic density-of-states (DOS). The authors examine the effects of dopant-induced disorder on two complimentary charge transport properties of semiconducting polymers, the Seebeck coefficient and electrical conductivity, and demonstrate a way to mitigate them. Their simulations, based on a modified Gaussian disorder model with Miller-Abrahams hopping rates, show that dopant-induced broadening of the …


Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence Jan 2021

Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence

Theses and Dissertations

Combining vibrating mesh nebulizers with additional new technologies leads to substantial improvements in pharmaceutical aerosol delivery to the lungs across therapeutic administration methods. In this dissertation, streamlined components, aerosol administration synchronization, and/or Excipient Enhanced Growth (EEG) technologies were utilized to develop and test several novel devices and aerosol delivery systems. The first focus of this work was to improve the poor delivery efficiency, e.g., 3.6% of nominal dose (Dugernier et al. 2017), of aerosolized medication administration to adult human subjects concurrent with high flow nasal cannula (HFNC) therapy, a form of continuous-flow non-invasive ventilation (NIV). The developed Low-Volume Mixer-Heater (LVMH) …


Inventions Of Scientists, Engineers And Specialists From Different Countries In The Area Of Nanotechnologies. Part Vi, Leonid A. Ivanov, Li D. Xu, Konstantin E. Razumeev, Zhanna V. Pisarenko, Aleksey V. Demenev Jan 2021

Inventions Of Scientists, Engineers And Specialists From Different Countries In The Area Of Nanotechnologies. Part Vi, Leonid A. Ivanov, Li D. Xu, Konstantin E. Razumeev, Zhanna V. Pisarenko, Aleksey V. Demenev

Information Technology & Decision Sciences Faculty Publications

Introduction. Advanced technologies impress people's imagination demonstrating the latest achievements (materials, methods, systems, technologies, devices etc.) that dramatically change the world. This, first of all, concerns nanotechnological inventions designed by scientists, engineers and specialists from different countries. Main part. The article provides an abstract overview of inventions of scientists, engineers and specialists from different countries: Russia, USA, China, Kazakhstan, Sweden. The results of the creative activity of scientists, engineers and specialists, including inventions in the field of nanotechnology and nanomaterials allow, when introduced to industry, achieving a significant effect in construction, housing and communal services, and related sectors of the …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Engineering Electromagnetic Systems For Next-Generation Brain-Machine Interface, Brayan Ricardo Navarrete Nov 2020

Engineering Electromagnetic Systems For Next-Generation Brain-Machine Interface, Brayan Ricardo Navarrete

FIU Electronic Theses and Dissertations

MagnetoElectric Nanoparticles (MENPs) are known to be a powerful tool for a broad range of applications spanning from medicine to energy-efficient electronics. MENPs allow to couple intrinsic electric fields in the nervous system with externally controlled magnetic fields. This thesis exploited MENPs to achieve contactless brain-machine interface (BMIs). Special electromagnetic devices were engineered for controlling the MENPs’ magnetoelectric effect to enable stimulation and recording. The most important engineering breakthroughs of the study are summarized below.

(I) Metastable Physics to Localize Nanoparticles: One of the main challenges is to localize the nanoparticles at any selected site(s) in the brain. The fundamental …


Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das Mar 2020

Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das

Doctoral Dissertations

Bioorthogonal catalysis offers a strategy for chemical transformations complementary to bioprocesses and has proven to be a powerful tool in biochemistry and medical sciences. Transition metal catalysts (TMCs) have emerged as a powerful tool to execute selective chemical transformations, however, lack of biocompatibility and stability limits their use in biological applications. Incorporation of TMCs into nanoparticle monolayers provides a versatile strategy for the generation of bioorthogonal nanocatalysts known as “nanozymes”. We have fabricated a family of nanozymes using gold nanoparticles (AuNPs) as scaffolds featuring diverse chemical functional groups for controlled localization of nanozymes in biological environments, providing unique strategies for …


Formulation And Validation Of Nanoparticle Controlled Delivery For Chemotherapeutic Drug Products, Shani L. Levit Jan 2020

Formulation And Validation Of Nanoparticle Controlled Delivery For Chemotherapeutic Drug Products, Shani L. Levit

Theses and Dissertations

Taxol, a formulation of paclitaxel (PTX), is one of the most widely used anticancer drugs, particularly for treating recurring ovarian carcinomas following surgery. Clinically, PTX is used in combination with other drugs such as lapatinib (LAP) to increase treatment efficacy. Delivering drug combinations with nanoparticles has the potential to improve chemotherapy outcomes. In this study, we use Flash NanoPrecipitation, a rapid, scalable process to encapsulate weakly hydrophobic drugs (logP in vitro. Encapsulating either PTX or LAP into nanoparticles increases drug potency. When PTX and LAP are co-loaded in the same nanoparticle, they have a synergistic effect that is greater than …


Interfacial Current Distribution Between Helium Plasma Jet And Water Solution, Sui Wang, Dingxin Liu, Zifeng Wang, Yifan Liu, Qiaosong Li, Xiaohua Wang, Michael G. Kong, Mingzhe Rong Jan 2020

Interfacial Current Distribution Between Helium Plasma Jet And Water Solution, Sui Wang, Dingxin Liu, Zifeng Wang, Yifan Liu, Qiaosong Li, Xiaohua Wang, Michael G. Kong, Mingzhe Rong

Bioelectrics Publications

The plasma-liquid interaction holds great importance for a number of emerging applications such as plasma biomedicine, yet a main fundamental question remains about the nature of the physiochemical processes occurring at the plasma-liquid interface. In this paper, the interfacial current distribution between helium plasma jet and water solution was measured for the first time by means of the splitting electrode method, which was borrowed from the field of arc plasma. For a plasma plume in continuous mode, it was found that the mean absolute current distribution at the plasma-liquid interface typically had an annular shape. This shape could be affected …


Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta Oct 2019

Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta

Doctoral Dissertations

Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. The “superbug” risk is further exacerbated by chronic infections generated from antibiotic-resistant biofilms that are highly resistant to available treatments. Synthetic macromolecules such as polymers and nanoparticles have emerged as promising antimicrobials. Moreover, ability to modulate nanomaterial interaction with bacterial cellular systems plays a pivotal role in improving the efficacy of the strategy. In the initial studies on engineering nanoparticle surface chemistry, I investigated the role played by surface ligands in determining the antimicrobial activity of the nanoparticles. In further study, …


Å-Indentation For Non-Destructive Elastic Moduli Measurements Of Supported Ultra-Hard Ultra-Thin Films And Nanostructures, Filippo Cellini, Yang Gao, Elisa Riedo Mar 2019

Å-Indentation For Non-Destructive Elastic Moduli Measurements Of Supported Ultra-Hard Ultra-Thin Films And Nanostructures, Filippo Cellini, Yang Gao, Elisa Riedo

Publications and Research

During conventional nanoindentation measurements, the indentation depths are usually larger than 1–10 nm, which hinders the ability to study ultra-thin films (<10 >nm) and supported atomically thin two-dimensional (2D) materials. Here, we discuss the development of modulated Å-indentation to achieve sub-Å indentations depths during force-indentation measurements while also imaging materials with nanoscale resolution. Modulated nanoindentation (MoNI) was originally invented to measure the radial elasticity of multi-walled nanotubes. w, by using extremely small amplitude oscillations (<<1 Å) at high frequency, and stiff cantilevers, we show how modulated nano/Å-indentation (MoNI/ÅI) enables non-destructive measurements of the contact stiffness and indentation modulus of ultra-thin ultra-stiff films, including CVD diamond films (~1000 GPa stiffness), as well as the transverse modulus of 2D materials. Our analysis demonstrates that in presence of a standard laboratory noise floor, the signal to noise ratio of MoNI/ÅI implemented with a commercial atomic force microscope (AFM) is such that a dynamic range of 80 dB –– achievable with commercial Lock-in amplifiers –– is sufficient to observe superior indentation curves, having indentation depths as small as 0.3 Å, resolution in indentation <0.05 Å, and in normal load <0.5 nN. Being implemented on a standard AFM, this method has the potential for a broad applicability.


Development Of 3d Printed And 3d Metal-Based Micro/Nanofabricated, And Nano-Functionalized, Microelectrode Array (Mea) Biosensors For Flexible, Conformable, And In Vitro Applications, Charles Didier Jan 2019

Development Of 3d Printed And 3d Metal-Based Micro/Nanofabricated, And Nano-Functionalized, Microelectrode Array (Mea) Biosensors For Flexible, Conformable, And In Vitro Applications, Charles Didier

Electronic Theses and Dissertations

Emerging fields such as "Organs on a Chip", disease modeling in vitro, stem cell manufacturing and wearable bioelectronics are demanding rapid development of 3D Microelectrode Arrays (MEAs) for electrical interfacing with biological constructs. The work reported in this thesis focuses on two developmental tracks: "Dynamic 3D MEAs" and metal microfabrication for 3D MEAs. In the first part of the thesis, we explore the capabilities and limitations of 3D printed microserpentines (µserpentines) and utilize these structures to develop dynamic 3D microelectrodes. Analytical modeling of µserpentines flexibility followed by integration into a flexible Kapton® package and PDMS insulation are demonstrated. These 3D …


Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills Jan 2019

Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills

Williams Honors College, Honors Research Projects

Fabrication and characterization nylon-6-MWCNT nanofiber as an electrochemical sensor to detect sodium ion concentrations specifically in sweat. Using contact angle to determine surface morphology and chronoamperometry testing to identify ideal sensor conditions, tests optimized parameters like weight percent of nylon or other polymers, carbon nanotube (CNT) isomer, and solution concentration to determine reproducibility of functional sensors. Utilizing the electric qualities of carbon nanotubes partnered with the sodium ion selectivity of calixarene treatment and polymers unique properties like flexibility and scalability create open an arena for optimizing sodium ion sensors for further development for functional prototypes. Morphology tests showed that the …


Distribution And Localization Of Novel Iodine Nanoparticles In The Human Glioma 1242 Growing In The Brains Of Mice, Benjamin Billings Jun 2018

Distribution And Localization Of Novel Iodine Nanoparticles In The Human Glioma 1242 Growing In The Brains Of Mice, Benjamin Billings

Honors Scholar Theses

Observing and designing the in vivo distribution and localization of therapeutic nanoparticles is an essential aspect of developing and understanding novel nanoparticle- based medical treatments. This study investigates novel PEGylated Iodine-based nanoparticles (INPs), an alternate composition to the more widely researched gold nanoparticles (AuNPs), which may help avoid adverse effects associated with AuNPs, such as potential toxicity and skin discoloration, when used in similar applications. Determining the localization of the novel INPs within murine brains containing human glioma U-1242MG cells is critical in assisting the development of radiation dose enhancement therapy for this aggressive cancer. Radiation dose enhancement utilizes the …


Nanoparticle-Mediated Therapeutic Agent Delivery For Treating Metastatic Breast Cancer—Challenges And Opportunities, Yunfei Li, Brock Humphries, Chengfeng Yang, Zhishan Wang May 2018

Nanoparticle-Mediated Therapeutic Agent Delivery For Treating Metastatic Breast Cancer—Challenges And Opportunities, Yunfei Li, Brock Humphries, Chengfeng Yang, Zhishan Wang

Toxicology and Cancer Biology Faculty Publications

Breast cancer (BC) is the second leading cause of cancer-related death in American women and more than 90% of BC-related death is caused by metastatic BC (MBC). This review stresses the limited success of traditional therapies as well as the use of nanomedicine for treating MBC. Understanding the biological barriers of MBC that nanoparticle in vivo trafficking must overcome could provide valuable new insights for translating nanomedicine from the bench side to the bedside. A view about nanomedicine applied in BC therapy has been summarized with their present status, which is gaining attention in the clinically-applied landscape. The progressions of …


Role Of Rigidity And Flexibility Of Functional Groups Within The Interior Of Supramolecular Assemblies And Their Implications, Oyuntuya Munkhbat Mar 2018

Role Of Rigidity And Flexibility Of Functional Groups Within The Interior Of Supramolecular Assemblies And Their Implications, Oyuntuya Munkhbat

Doctoral Dissertations

Engineering of supramolecular assemblies at molecular level renders functional nanomaterials that present explicit response to certain environmental changes. Systematic structure-property correlation studies will unravel the fundamental design constraints of these functional nanomaterials that fulfill the emergent need. This dissertation will primarily focus on understanding the role of rigidity and flexibility of functional groups within amphiphilic assemblies and employing this basic concept in drug delivery and diagnostics applications. Supramolecular assemblies formed by amphiphilic dendrimers and polymers are preferred for this study as they exhibit high thermodynamic stability and structural flexibility. The role of aromatic interaction on the unimer-aggregate dynamic equilibrium was …


Investigating The Effects Of Orientation Control Of Graphene Nanoplatelet Suspensions By A Magnetic Field On The Viscosity Of A Nanofluid System, Radhika Iyer Jan 2018

Investigating The Effects Of Orientation Control Of Graphene Nanoplatelet Suspensions By A Magnetic Field On The Viscosity Of A Nanofluid System, Radhika Iyer

Graduate Research Theses & Dissertations

In this investigation, the rheological behavior of paraffin oil containing diamagnetic suspensions is characterized under varying magnetic field conditions. The particles suspended in the white paraffin oil at mass concentrations of 0.1, 0.3, 0.5, 0.7 and 1% m/m are two-dimensional graphene nanoplatelets with an average thickness of 2 – 8 nm. Rheological experiments were conducted using a Brookfield DV2T viscometer with a modified cylindrical spindle over the range of shear rates between 192 s-1 to 1928 s-1. A Neodymium N42 ring magnet with a surface strength of 1.32 T generated the magnetic field conditions for the rheological experiments and was …


Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed Dec 2017

Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed

Electronic Thesis and Dissertation Repository

The fast diminishing of fossil fuels in the near future, as well as the global warming caused by increasing greenhouse gases have motivated the urgent quest to develop advanced materials as cost-effective photoanodes for solar light harvesting and many other photocatalytic applications. Recently, titania nanotube arrays (TNTAs) fabricated by anodization process has attracted great interest due to their excellent properties such as: high surface area, vertically oriented, highly organized, one-dimensional, nanotubular structure, photoactivity, chemical stability and biocompatibility. This unique combination of excellent properties makes TNTAs an excellent photoanode for solar light harvesting. However, the relatively wide band gap energy of …


Structural Mrsa Resistance Through Carbon-Infiltrated Carbon Nanotube Coating Of External Fixator Pins, Jaclyn Larsen, Stephanie Morco, Brian Jensen, Anton Bowden Feb 2017

Structural Mrsa Resistance Through Carbon-Infiltrated Carbon Nanotube Coating Of External Fixator Pins, Jaclyn Larsen, Stephanie Morco, Brian Jensen, Anton Bowden

Biomedical Engineering Western Regional Conference

No abstract provided.


Ginseng Polysaccharides Nanoparticles - Synthesis, Characterization, And Biological Activity, Kazi Farida Akhter Aug 2016

Ginseng Polysaccharides Nanoparticles - Synthesis, Characterization, And Biological Activity, Kazi Farida Akhter

Electronic Thesis and Dissertation Repository

North American (NA) ginseng is a widely used medicinal plant. Polysaccharides (PS), the major medicinal fractions derived from NA ginseng root, have been shown several biological activities including anti-carcinogenic, anti-aging, immunostimulatory and antioxidant activity. This work focused on nanoprocessing of ginseng PS for enhancing their immunostimulation. Herein, we have developed a novel microfluidic approach to synthesize ginseng PS nanoparticles (NPs) from NA ginseng root. The microfluidics was found to provide unimodal PS spheres down to 20 nm with very narrow particle size distributions. In addition, the immunostimulating effect was investigated on Murine macrophage cell lines, with the results revealing an …


Assembly Of Nucleic Acid-Based Nanoparticles By Gas-Liquid Segmented Flow Microfluidics, Matthew L. Capek, Ross Verheul, David H. Thompson Aug 2016

Assembly Of Nucleic Acid-Based Nanoparticles By Gas-Liquid Segmented Flow Microfluidics, Matthew L. Capek, Ross Verheul, David H. Thompson

The Summer Undergraduate Research Fellowship (SURF) Symposium

The development of novel and efficient mixing methods is important for optimizing the efficiency of many biological and chemical processes. Tuning the physical and performance properties of nucleic acid-based nanoparticles is one such example known to be strongly affected by mixing efficiency. The characteristics of DNA nanoparticles (such as size, polydispersity, ζ-potential, and gel shift) are important to ensure their therapeutic potency, and new methods to optimize these characteristics are of significant importance to achieve the highest efficacy. In the present study, a simple segmented flow microfluidics system has been developed to augment mixing of pDNA/bPEI nanoparticles. This DNA and …


Hydrothermally Processed 1d Hydroxyapatite: Mechanism Of Formation And Biocompatibility Studies, Zoran Stojanović, Nenad Ignjatović, Victoria M. Wu, Vojca Žunič, Ljiljana Veselinović, Srečo D. Škapin, Miroslav Miljković, Vuk Uskoković, Dragab Uskoković Jun 2016

Hydrothermally Processed 1d Hydroxyapatite: Mechanism Of Formation And Biocompatibility Studies, Zoran Stojanović, Nenad Ignjatović, Victoria M. Wu, Vojca Žunič, Ljiljana Veselinović, Srečo D. Škapin, Miroslav Miljković, Vuk Uskoković, Dragab Uskoković

Pharmacy Faculty Articles and Research

Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome …


Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu Jun 2016

Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu

Pharmacy Faculty Articles and Research

Socially responsible technologies are designed while taking into consideration the socioeconomic, geopolitical and environmental limitations of regions in which they will be implemented. In the medical context, this involves making therapeutic platforms more accessible and affordable to patients in poor regions of the world wherein a given disease is endemic. This often necessitates going against the reigning trend of making therapeutic nanoparticles ever more structurally complex and expensive. However, studies aimed at simplifying materials and formulations while maintaining the functionality and therapeutic response of their more complex counterparts seldom provoke a significant interest in the scientific community. In this review …


Complex Coacervate-Based Materials For Biomedicine, Sarah L. Perry, Whitney C. Blocher Jan 2016

Complex Coacervate-Based Materials For Biomedicine, Sarah L. Perry, Whitney C. Blocher

Chemical Engineering Faculty Publication Series

There has been increasing interest in complex coacervates for deriving and trans- porting biomaterials. Complex coacervates are a dense, polyelectrolyte-rich liq- uid that results from the electrostatic complexation of oppositely charged macroions. Coacervates have long been used as a strategy for encapsulation, par- ticularly in food and personal care products. More recent efforts have focused on the utility of this class of materials for the encapsulation of small molecules, pro- teins, RNA, DNA, and other biomaterials for applications ranging from sensing to biomedicine. Furthermore, coacervate-related materials have found utility in other areas of biomedicine, including cartilage mimics, tissue culture scaffolds, …


When 1 + 1 > 2: Nanostructured Composites For Hard Tissue Engineering Applications, Vuk Uskoković Dec 2015

When 1 + 1 > 2: Nanostructured Composites For Hard Tissue Engineering Applications, Vuk Uskoković

Pharmacy Faculty Articles and Research

Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. …