Open Access. Powered by Scholars. Published by Universities.®

Radiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Radiology

Evaluation And Clinical Implementation Of A Dual-Energy Ct Stopping-Power Ratio Mapping Technique For Proton-Therapy Treatment Planning, Maria Jose Medrano Matamoros Aug 2022

Evaluation And Clinical Implementation Of A Dual-Energy Ct Stopping-Power Ratio Mapping Technique For Proton-Therapy Treatment Planning, Maria Jose Medrano Matamoros

McKelvey School of Engineering Theses & Dissertations

Proton radiotherapy has the potential to treat tumors with better conformal dose distribution than competing modalities when the rapid dose falloff at the end of the proton-beam range is correctly aligned to the edge of the clinical target volume (CTV). However, its clinical potential is dependent on the accurate localization of the Bragg-peak position from predicted stopping-power ratio maps. The method that is most commonly used in today’s clinical practice for predicting stopping-power ratio (SPR) consists of a stoichiometric calibrationtechnique based on single-energy CT (SECT) for direct estimation of patient-specific SPR distribution from vendor-reconstructed Hounsfield Unit (HU) images. Unfortunately, this …


Focused Ultrasound-Mediated Drug Delivery To The Brainstem, Dezhuang Ye Jan 2021

Focused Ultrasound-Mediated Drug Delivery To The Brainstem, Dezhuang Ye

McKelvey School of Engineering Theses & Dissertations

Brainstem gliomas are tumors that occur in the brainstem, the brain region that connects the brain to the spinal cord and controls vital body functions. The critical anatomic location of the brainstem precludes surgical intervention and limits the use of invasive therapeutic techniques. Moreover, the frequently intact blood-brain barrier (BBB) of most brainstem gliomas prevents therapeutic agents from reaching the diseased site. The currently available techniques for brain drug delivery are either invasive (e.g., convection-enhanced delivery) or lack targeting to the diseased site (e.g., intranasal brain drug delivery). Novel techniques that can noninvasively overcome the BBB are critically needed for …


Multi-Dimensional Extension Of The Alternating Minimization Algorithm In X-Ray Computed Tomography, Jingwei Lu Aug 2019

Multi-Dimensional Extension Of The Alternating Minimization Algorithm In X-Ray Computed Tomography, Jingwei Lu

McKelvey School of Engineering Theses & Dissertations

X-ray computed tomography (CT) is an important and effective tool in medical and industrial imaging applications. The state-of-the-art methods to reconstruct CT images have had great development but also face challenges. This dissertation derives novel algorithms to reduce bias and metal artifacts in a wide variety of imaging modalities and increase performance in low-dose scenarios. The most widely available CT systems still use the single-energy CT (SECT), which is good at showing the anatomic structure of the patient body. However, in SECT image reconstruction, energy-related information is lost. In applications like radiation treatment planning and dose prediction, accurate energy-related information …


Multi-Dimensional Extension Of The Alternating Minimization Algorithm In X-Ray Computed Tomography, Jingwei Lu Aug 2019

Multi-Dimensional Extension Of The Alternating Minimization Algorithm In X-Ray Computed Tomography, Jingwei Lu

McKelvey School of Engineering Theses & Dissertations

X-ray computed tomography (CT) is an important and effective tool in medical and industrial

imaging applications. The state-of-the-art methods to reconstruct CT images have had

great development but also face challenges. This dissertation derives novel algorithms to

reduce bias and metal artifacts in a wide variety of imaging modalities and increase performance

in low-dose scenarios.

The most widely available CT systems still use the single-energy CT (SECT), which is

good at showing the anatomic structure of the patient body. However, in SECT image

reconstruction, energy-related information is lost. In applications like radiation treatment

planning and dose prediction, accurate energy-related information …