Open Access. Powered by Scholars. Published by Universities.®

Radiation Medicine Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Radiation Medicine

Evaluation Of An End-To-End Radiotherapy Treatment Planning Pipeline For Prostate Cancer, Mohammad Daniel El Basha, Court Laurence, Carlos Eduardo Cardenas, Julianne Pollard-Larkin, Steven Frank, David T. Fuentes, Falk Poenisch, Zhiqian H. Yu May 2024

Evaluation Of An End-To-End Radiotherapy Treatment Planning Pipeline For Prostate Cancer, Mohammad Daniel El Basha, Court Laurence, Carlos Eduardo Cardenas, Julianne Pollard-Larkin, Steven Frank, David T. Fuentes, Falk Poenisch, Zhiqian H. Yu

Dissertations & Theses (Open Access)

Radiation treatment planning is a crucial and time-intensive process in radiation therapy. This planning involves carefully designing a treatment regimen tailored to a patient’s specific condition, including the type, location, and size of the tumor with reference to surrounding healthy tissues. For prostate cancer, this tumor may be either local, locally advanced with extracapsular involvement, or extend into the pelvic lymph node chain. Automating essential parts of this process would allow for the rapid development of effective treatment plans and better plan optimization to enhance tumor control for better outcomes.

The first objective of this work, to automate the treatment …


Proof-Of-Concept For Converging Beam Small Animal Irradiator, Benjamin Insley May 2024

Proof-Of-Concept For Converging Beam Small Animal Irradiator, Benjamin Insley

Dissertations & Theses (Open Access)

The Monte Carlo particle simulator TOPAS, the multiphysics solver COMSOL., and

several analytical radiation transport methods were employed to perform an in-depth proof-ofconcept

for a high dose rate, high precision converging beam small animal irradiation platform.

In the first aim of this work, a novel carbon nanotube-based compact X-ray tube optimized for

high output and high directionality was designed and characterized. In the second aim, an

optimization algorithm was developed to customize a collimator geometry for this unique Xray

source to simultaneously maximize the irradiator’s intensity and precision. Then, a full

converging beam irradiator apparatus was fit with a multitude …


The Development Of Artificial Intelligence-Based Tools For Expert Peer Review Of Radiotherapy Treatment Plans, Mary Gronberg Aug 2023

The Development Of Artificial Intelligence-Based Tools For Expert Peer Review Of Radiotherapy Treatment Plans, Mary Gronberg

Dissertations & Theses (Open Access)

Creating a patient-specific radiation treatment plan is a time-consuming and operator-dependent manual process. The treatment planner adjusts the planning parameters in a trial-and-error fashion in an effort to balance the competing clinical objectives of tumor coverage and normal tissue sparing. Often, a plan is selected because it meets basic organ at risk dose thresholds for severe toxicity; however, it is evident that a plan with a decreased risk of normal tissue complication probability could be achieved. This discrepancy between “acceptable” and “best possible” plan is magnified if either the physician or treatment planner lacks focal expertise in the disease site. …


Improving Dose-Response Correlations For Locally Advanced Nsclc Patients Treated With Imrt Or Pspt, Yulun He May 2023

Improving Dose-Response Correlations For Locally Advanced Nsclc Patients Treated With Imrt Or Pspt, Yulun He

Dissertations & Theses (Open Access)

The standard of care for locally advanced non-small cell lung cancer (NSCLC) is concurrent chemo-radiotherapy. Despite recent advancements in radiation delivery methods, the median survival time of NSCLC patients remains below 28 months. Higher tumor dose has been found to increase survival but also a higher rate of radiation pneumonitis (RP) that affects breathing capability. In fear of such toxicity, less-aggressive treatment plans are often clinically preferred, leading to metastasis and recurrence. Therefore, accurate RP prediction is crucial to ensure tumor coverage to improve treatment outcome. Current models have associated RP with increased dose but with limited accuracy as they …


Automating The Radiation Therapy Treatment Planning Process For Pediatric Patients With Medulloblastoma, Soleil Hernandez May 2023

Automating The Radiation Therapy Treatment Planning Process For Pediatric Patients With Medulloblastoma, Soleil Hernandez

Dissertations & Theses (Open Access)

Over the past 50 years, pediatric cancer 5-year survival rates increased from 20% to 80% in high-income countries, however, these trends have not been mirrored in low-and-middle-income countries (LMICs). This is due in part to delayed diagnosis, higher rates of advanced disease at presentation and a growing lack of access to high quality medical personnel and technology necessary to deliver complex treatments.

The long-term goal of this study was to alleviate demanding workflows and increase global access to high-quality pediatric radiation therapy by harnessing the power of artificial intelligence to automate the radiation therapy treatment planning process for pediatric patients …


Quantifying The Magnitude Of Total Dose Deviation Caused By Various Sources Of Error Among Iroc Phantom Irradiation Results, Sharbacha S. Edward Dec 2022

Quantifying The Magnitude Of Total Dose Deviation Caused By Various Sources Of Error Among Iroc Phantom Irradiation Results, Sharbacha S. Edward

Dissertations & Theses (Open Access)

The Imaging and Radiation Oncology Core (IROC) phantoms are used as an end-to-end test of an institution’s radiotherapy processes, and for clinical trial credentialing. Phantoms are treated like patients, and evaluation of the doses received by the thermoluminescent dosimeters (TLDs) inside the phantom, reflects the accuracy with which an institution can image, plan and irradiate a phantom or patient. Recent phantom results show that among the hundreds of various IROC phantoms irradiated annually, 8-17% of institutions fail this test. The purpose of this work was to investigate the various types of errors that may occur during the treatment process and …


Development Of Advanced Mr-Guided Adaptive Radiation Therapy Methods For Head & Neck Cancers On The 1.5t Mr-Linac, Brigid Mcdonald Aug 2022

Development Of Advanced Mr-Guided Adaptive Radiation Therapy Methods For Head & Neck Cancers On The 1.5t Mr-Linac, Brigid Mcdonald

Dissertations & Theses (Open Access)

The 1.5T hybrid MRI/linear accelerator (MR-linac) has recently been introduced into clinical practice and used for the treatment of head and neck cancers (HNC). This device enables on-line adaptive radiation therapy (ART) based on anatomical changes throughout treatment and variations in patient position. This novel technology also has the potential for advanced ART strategies such as dose-optimized ART, in which the treatment plan is optimized based on the accumulated dose over previous fractions, or biological image-guided ART, in which the plan is adapted based on individual tumor response as measured through quantitative imaging techniques such as diffusion-weighted imaging (DWI). The …


Integration Of Biomedical Imaging And Translational Approaches For Management Of Head And Neck Cancer, Abdallah Mohamed, Abdallah Mohamed May 2022

Integration Of Biomedical Imaging And Translational Approaches For Management Of Head And Neck Cancer, Abdallah Mohamed, Abdallah Mohamed

Dissertations & Theses (Open Access)

The aim of the clinical component of this work was to determine whether the currently available clinical imaging tools can be integrated with radiotherapy (RT) platforms for monitoring and adaptation of radiation dose, prediction of tumor response and disease outcomes, and characterization of patterns of failure and normal tissue toxicity in head and neck cancer (HNC) patients with potentially curable tumors. In Aim 1, we showed that the currently available clinical imaging modalities can be successfully used to adapt RT dose based-on dynamic tumor response, predict oncologic disease outcomes, characterize RT-induced toxicity, and identify the patterns of disease failure. We …


Atr-Mediated Cd47 And Pd-L1 Upregulation Restricts Radiotherapy-Induced Immune Priming And Abscopal Responses In Colorectal Cancer, Cheng-En Hsieh, Cheng-En Hsieh May 2022

Atr-Mediated Cd47 And Pd-L1 Upregulation Restricts Radiotherapy-Induced Immune Priming And Abscopal Responses In Colorectal Cancer, Cheng-En Hsieh, Cheng-En Hsieh

Dissertations & Theses (Open Access)

Radiotherapy of colorectal cancer (CRC) can prime adaptive immunity against tumor-associated antigen (TAA)-expressing CRC cells systemically. However, incidences of abscopal tumor remission are extremely rare, and the post-irradiation immune escape mechanisms in CRC remain elusive. We report that CRC cells utilize a common DNA repair signaling pathway — ATR/Chk1/STAT3 — to upregulate both CD47 and PD-L1 in response to radiotherapy, which through engagement of SIRPα and PD-1 suppresses the capacity of antigen-presenting cells to phagocytose them thereby preventing TAA cross-presentation and innate immune activation. This post-irradiation CD47 and PD-L1 upregulation can be observed across various human solid tumor cells. Concordantly, …


Advancement Of A 3d Computational Phantom And Its Age Scaling Methodologies For Retrospective Dose Reconstruction Studies, Aashish Gupta Aug 2021

Advancement Of A 3d Computational Phantom And Its Age Scaling Methodologies For Retrospective Dose Reconstruction Studies, Aashish Gupta

Dissertations & Theses (Open Access)

We have used a 3D age-scalable computational phantom for over two decades for retrospective dose reconstruction studies of childhood cancer survivors (CCS) treated with 2D historic radiotherapy (RT). However, our phantom and its age scaling functions (ASF) must be updated so that it can be used in studies that include survivors treated with contemporary RT. We aimed to implement our phantom and its age scaling functions in DICOM format and determine the feasibility of applying our ASFs to accurately scale the whole-body CT-based anatomies.

In the implementation study, we developed Python scripts that model the phantom and ASFs in a …


Modeling Proton Relative Biological Effectiveness Using Monte Carlo Simulations Of Microdosimetry, Mark A. Newpower Aug 2019

Modeling Proton Relative Biological Effectiveness Using Monte Carlo Simulations Of Microdosimetry, Mark A. Newpower

Dissertations & Theses (Open Access)

Proton therapy is a radiotherapy modality that can offer a better physical dose distribution when compared to photon radiotherapy by taking advantage of the Bragg peak, a narrow region of rapid energy loss. Proton therapy is also known to offer an enhanced relative biological effectiveness (RBE) compared to photons. In the current clinical standard, RBE is fixed at 1.1 at all points along the proton beam, meaning protons are assumed to require 10% less dose than photons to achieve target coverage and organ at risk (OAR) sparing. However, there is mounting clinical evidence, and a significant number of in vitro …