Open Access. Powered by Scholars. Published by Universities.®

Ophthalmology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Ophthalmology

Using Three-Dimensional Printed Models For Trainee Orbital Fracture Education, Martina Rama, Lauren Schlegel, Douglas M. Wisner, Robert S. Pugliese, Sathyadeepak Ramesh, Robert Penne, Alison Watson Jun 2023

Using Three-Dimensional Printed Models For Trainee Orbital Fracture Education, Martina Rama, Lauren Schlegel, Douglas M. Wisner, Robert S. Pugliese, Sathyadeepak Ramesh, Robert Penne, Alison Watson

Wills Eye Hospital Papers

BACKGROUND: Three-dimensional printing is an underutilized technology in ophthalmology training; its use must be explored in complex educational scenarios. This study described a novel approach to trainee education of orbital fracture repair utilizing three-dimensional (3D) printed models as a teaching tool.

METHODS: Ophthalmology residents and oculoplastic fellows from multiple training institutions underwent an educational session on orbital fractures, learning through four different models. Participants analyzed orbital fractures through computerized tomography (CT) imaging alone and then utilizing CT imaging with the aid of a 3D printed model. Participants completed a questionnaire assessing their understanding of the fracture pattern and surgical approach. …


Extracellular-Vesicle-Based Therapeutics In Neuro-Ophthalmic Disorders, Hamed Massoumi, Sohil Amin, Mohammad Soleimani, Bita Momenaei, Mohammad Javad Ashraf, Victor H Guaiquil, Peiman Hematti, Mark I Rosenblatt, Ali R Djalilian, Elmira Jalilian May 2023

Extracellular-Vesicle-Based Therapeutics In Neuro-Ophthalmic Disorders, Hamed Massoumi, Sohil Amin, Mohammad Soleimani, Bita Momenaei, Mohammad Javad Ashraf, Victor H Guaiquil, Peiman Hematti, Mark I Rosenblatt, Ali R Djalilian, Elmira Jalilian

Wills Eye Hospital Papers

Extracellular vesicles (EVs) have been recognized as promising candidates for developing novel therapeutics for a wide range of pathologies, including ocular disorders, due to their ability to deliver a diverse array of bioactive molecules, including proteins, lipids, and nucleic acids, to recipient cells. Recent studies have shown that EVs derived from various cell types, including mesenchymal stromal cells (MSCs), retinal pigment epithelium cells, and endothelial cells, have therapeutic potential in ocular disorders, such as corneal injury and diabetic retinopathy. EVs exert their effects through various mechanisms, including promoting cell survival, reducing inflammation, and inducing tissue regeneration. Furthermore, EVs have shown …