Open Access. Powered by Scholars. Published by Universities.®

Neurology Commons

Open Access. Powered by Scholars. Published by Universities.®

Female

Department of Neuroscience Faculty Papers

Articles 1 - 3 of 3

Full-Text Articles in Neurology

Loss Of Vglut3 Produces Circadian-Dependent Hyperdopaminergia And Ameliorates Motor Dysfunction And L-Dopa-Mediated Dyskinesias In A Model Of Parkinson's Disease., Christopher B. Divito, Kathy Steece-Collier, Daniel T. Case, Sean-Paul G. Williams, Jennifer A. Stancati, Lianteng Zhi, Maria E. Rubio, Caryl E. Sortwell, Timothy J. Collier, David Sulzer, Robert H. Edwards, Hui Zhang, Rebecca P. Seal Nov 2015

Loss Of Vglut3 Produces Circadian-Dependent Hyperdopaminergia And Ameliorates Motor Dysfunction And L-Dopa-Mediated Dyskinesias In A Model Of Parkinson's Disease., Christopher B. Divito, Kathy Steece-Collier, Daniel T. Case, Sean-Paul G. Williams, Jennifer A. Stancati, Lianteng Zhi, Maria E. Rubio, Caryl E. Sortwell, Timothy J. Collier, David Sulzer, Robert H. Edwards, Hui Zhang, Rebecca P. Seal

Department of Neuroscience Faculty Papers

UNLABELLED: The striatum is essential for many aspects of mammalian behavior, including motivation and movement, and is dysfunctional in motor disorders such as Parkinson's disease. The vesicular glutamate transporter 3 (VGLUT3) is expressed by striatal cholinergic interneurons (CINs) and is thus well positioned to regulate dopamine (DA) signaling and locomotor activity, a canonical measure of basal ganglia output. We now report that VGLUT3 knock-out (KO) mice show circadian-dependent hyperlocomotor activity that is restricted to the waking cycle and is due to an increase in striatal DA synthesis, packaging, and release. Using a conditional VGLUT3 KO mouse, we show that deletion …


Human Ips Cell-Derived Astrocyte Transplants Preserve Respiratory Function After Spinal Cord Injury., Ke Li, Elham Javed, Daniel Scura, Tamara J. Hala, Suneil Seetharam, Aditi Falnikar, Jean-Philippe Richard, Ashley Chorath, Nicholas J. Maragakis, Megan C. Wright, Angelo C. Lepore Sep 2015

Human Ips Cell-Derived Astrocyte Transplants Preserve Respiratory Function After Spinal Cord Injury., Ke Li, Elham Javed, Daniel Scura, Tamara J. Hala, Suneil Seetharam, Aditi Falnikar, Jean-Philippe Richard, Ashley Chorath, Nicholas J. Maragakis, Megan C. Wright, Angelo C. Lepore

Department of Neuroscience Faculty Papers

Transplantation-based replacement of lost and/or dysfunctional astrocytes is a promising therapy for spinal cord injury (SCI) that has not been extensively explored, despite the integral roles played by astrocytes in the central nervous system (CNS). Induced pluripotent stem (iPS) cells are a clinically-relevant source of pluripotent cells that both avoid ethical issues of embryonic stem cells and allow for homogeneous derivation of mature cell types in large quantities, potentially in an autologous fashion. Despite their promise, the iPS cell field is in its infancy with respect to evaluating in vivo graft integration and therapeutic efficacy in SCI models. Astrocytes express …


Synchronous And Asynchronous Theta And Gamma Activity During Episodic Memory Formation., John F Burke, Kareem A Zaghloul, Joshua Jacobs, Ryan B Williams, Michael R Sperling, Ashwini D Sharan, Michael J Kahana Jan 2013

Synchronous And Asynchronous Theta And Gamma Activity During Episodic Memory Formation., John F Burke, Kareem A Zaghloul, Joshua Jacobs, Ryan B Williams, Michael R Sperling, Ashwini D Sharan, Michael J Kahana

Department of Neuroscience Faculty Papers

To test the hypothesis that neural oscillations synchronize to mediate memory encoding, we analyzed electrocorticographic recordings taken as 68 human neurosurgical patients studied and subsequently recalled lists of common words. To the extent that changes in spectral power reflect synchronous oscillations, we would expect those power changes to be accompanied by increases in phase synchrony between the region of interest and neighboring brain areas. Contrary to the hypothesized role of synchronous gamma oscillations in memory formation, we found that many key regions that showed power increases during successful memory encoding also exhibited decreases in global synchrony. Similarly, cortical theta activity …