Open Access. Powered by Scholars. Published by Universities.®

Neurology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Neurology

Translational Evaluation Of Acid/Base And Electrolyte Alterations In Rodent Model Of Focal Ischemia, Sarah R. Martha, Lisa A. Collier, Stephanie M. Davis, Hilary A. Seifert, Christopher C. Leonardo, Craig T. Ajmo, Elspeth A. Foran, Justin F. Fraser, Keith R. Pennypacker Oct 2018

Translational Evaluation Of Acid/Base And Electrolyte Alterations In Rodent Model Of Focal Ischemia, Sarah R. Martha, Lisa A. Collier, Stephanie M. Davis, Hilary A. Seifert, Christopher C. Leonardo, Craig T. Ajmo, Elspeth A. Foran, Justin F. Fraser, Keith R. Pennypacker

Neurology Faculty Publications

BACKGROUND AND PURPOSE: Acid/base and electrolytes could provide clinically valuable information about cerebral infarct core and penumbra. We evaluated associations between acid/base and electrolyte changes and outcomes in 2 rat models of stroke, permanent, and transient middle cerebral artery occlusion.

METHODS: Three-month old Sprague-Dawley rats underwent permanent or transient middle cerebral artery occlusion. Pre- and post-middle cerebral artery occlusion venous samples for permanent and transient models provided pH, carbon dioxide, oxygen, glucose, and electrolyte values of ionized calcium, potassium, and sodium. Multiple regression determined predictors of infarct volume from these values, and Kaplan-Meier curve analyzed morality between permanent and transient …


Amperometric Self-Referencing Ceramic Based Microelectrode Arrays For D-Serine Detection, Diana Campos-Beltrán, Åsa Konradsson-Geuken, Jorge E. Quintero, Lisa Marshall Mar 2018

Amperometric Self-Referencing Ceramic Based Microelectrode Arrays For D-Serine Detection, Diana Campos-Beltrán, Åsa Konradsson-Geuken, Jorge E. Quintero, Lisa Marshall

Neuroscience Faculty Publications

D-serine is the major D-amino acid in the mammalian central nervous system. As the dominant co-agonist of the endogenous synaptic NMDA receptor, D-serine plays a role in synaptic plasticity, learning, and memory. Alterations in D-serine are linked to neuropsychiatric disorders including schizophrenia. Thus, it is of increasing interest to monitor the concentration of D-serine in vivo as a relevant player in dynamic neuron-glia network activity. Here we present a procedure for amperometric detection of D-serine with self-referencing ceramic-based microelectrode arrays (MEAs) coated with D-amino acid oxidase from the yeast Rhodotorula gracilis (RgDAAO). We demonstrate in vitro D-serine recordings with a …


Cigarette Smoke Initiates Oxidative Stress-Induced Cellular Phenotypic Modulation Leading To Cerebral Aneurysm Pathogenesis., Robert M. Starke, John W. Thompson, Muhammad S. Ali, Crissey L. Pascale, Alejandra Martinez Lege, Dale Ding, Nohra Chalouhi, David M. Hasan, Pascal Jabbour, Gary K Owens, Michal Toborek, Joshua M. Hare, Aaron S. Dumont Mar 2018

Cigarette Smoke Initiates Oxidative Stress-Induced Cellular Phenotypic Modulation Leading To Cerebral Aneurysm Pathogenesis., Robert M. Starke, John W. Thompson, Muhammad S. Ali, Crissey L. Pascale, Alejandra Martinez Lege, Dale Ding, Nohra Chalouhi, David M. Hasan, Pascal Jabbour, Gary K Owens, Michal Toborek, Joshua M. Hare, Aaron S. Dumont

Department of Neurosurgery Faculty Papers

OBJECTIVE: Cigarette smoke exposure (CSE) is a risk factor for cerebral aneurysm (CA) formation, but the molecular mechanisms are unclear. Although CSE is known to contribute to excess reactive oxygen species generation, the role of oxidative stress on vascular smooth muscle cell (VSMC) phenotypic modulation and pathogenesis of CAs is unknown. The goal of this study was to investigate whether CSE activates a NOX (NADPH oxidase)-dependent pathway leading to VSMC phenotypic modulation and CA formation and rupture.

APPROACH AND RESULTS: In cultured cerebral VSMCs, CSE increased expression of NOX1 and reactive oxygen species which preceded upregulation of proinflammatory/matrix remodeling genes …


Analytical High-Resolution Electron Microscopy Reveals Organ-Specific Nanoceria Bioprocessing, Uschi M. Graham, Robert A. Yokel, Alan K. Dozier, Lawrence Drummy, Krishnamurthy Mahalingam, Michael T. Tseng, Eileen Birch, Joseph Fernback Jan 2018

Analytical High-Resolution Electron Microscopy Reveals Organ-Specific Nanoceria Bioprocessing, Uschi M. Graham, Robert A. Yokel, Alan K. Dozier, Lawrence Drummy, Krishnamurthy Mahalingam, Michael T. Tseng, Eileen Birch, Joseph Fernback

Pharmaceutical Sciences Faculty Publications

This is the first utilization of advanced analytical electron microscopy methods, including high-resolution transmission electron microscopy, high-angle annular dark field scanning transmission electron microscopy, electron energy loss spectroscopy, and energy-dispersive X-ray spectroscopy mapping to characterize the organ-specific bioprocessing of a relatively inert nanomaterial (nanoceria). Liver and spleen samples from rats given a single intravenous infusion of nanoceria were obtained after prolonged (90 days) in vivo exposure. These advanced analytical electron microscopy methods were applied to elucidate the organ-specific cellular and subcellular fate of nanoceria after its uptake. Nanoceria is bioprocessed differently in the spleen than in the liver.