Open Access. Powered by Scholars. Published by Universities.®

Neurology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Neurology

Optimization And Validation Of A Modified Radial-Arm Water Maze Protocol Using A Murine Model Of Mild Closed Head Traumatic Brain Injury, Teresa Macheda, Kelly N. Roberts, Josh M. Morganti, David J. Braun, Adam D. Bachstetter Aug 2020

Optimization And Validation Of A Modified Radial-Arm Water Maze Protocol Using A Murine Model Of Mild Closed Head Traumatic Brain Injury, Teresa Macheda, Kelly N. Roberts, Josh M. Morganti, David J. Braun, Adam D. Bachstetter

Spinal Cord and Brain Injury Research Center Faculty Publications

Cognitive impairments can be a significant problem after a traumatic brain injury (TBI), which affects millions worldwide each year. There is a need for establish reproducible cognitive assays in rodents to better understand disease mechanisms and to develop therapeutic interventions towards treating TBI-induced impairments. Our goal was to validate and standardize the radial arm water maze (RAWM) test as an assay to screen for cognitive impairments caused by TBI. RAWM is a visuo-spatial learning test, originally designed for use with rats, and later adapted for mice. The present study investigates whether test procedures, such us the presence of extra-maze cues …


Myelin As An Inflammatory Mediator: Myelin Interactions With Complement, Macrophages, And Microglia In Spinal Cord Injury, Timothy J. Kopper, John C. Gensel Jun 2018

Myelin As An Inflammatory Mediator: Myelin Interactions With Complement, Macrophages, And Microglia In Spinal Cord Injury, Timothy J. Kopper, John C. Gensel

Spinal Cord and Brain Injury Research Center Faculty Publications

Spinal cord injury (SCI) triggers chronic intraspinal inflammation consisting of activated resident and infiltrating immune cells (especially microglia/macrophages). The environmental factors contributing to this protracted inflammation are not well understood; however, myelin lipid debris is a hallmark of SCI. Myelin is also a potent macrophage stimulus and target of complement‐mediated clearance and inflammation. The downstream effects of these neuroimmune interactions have the potential to contribute to ongoing pathology or facilitate repair. This depends in large part on whether myelin drives pathological or reparative macrophage activation states, commonly referred to as M1 (proinflammatory) or M2 (alternatively) macrophages, respectively. Here we review …


Chronic Traumatic Encephalopathy-Integration Of Canonical Traumatic Brain Injury Secondary Injury Mechanisms With Tau Pathology, Jacqueline R. Kulbe, Edward D. Hall Nov 2017

Chronic Traumatic Encephalopathy-Integration Of Canonical Traumatic Brain Injury Secondary Injury Mechanisms With Tau Pathology, Jacqueline R. Kulbe, Edward D. Hall

Spinal Cord and Brain Injury Research Center Faculty Publications

In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, football, football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy …


A Latent Propriospinal Network Can Restore Diaphragm Function After High Cervical Spinal Cord Injury, Jared M. Cregg, Kevin A. Chu, Lydia E. Hager, Rachel S. J. Maggard, Daimen R. Stoltz, Michaela Edmond, Warren J. Alilain, Polyxeni Philippidou, Lynn T. Landmesser, Jerry Silver Oct 2017

A Latent Propriospinal Network Can Restore Diaphragm Function After High Cervical Spinal Cord Injury, Jared M. Cregg, Kevin A. Chu, Lydia E. Hager, Rachel S. J. Maggard, Daimen R. Stoltz, Michaela Edmond, Warren J. Alilain, Polyxeni Philippidou, Lynn T. Landmesser, Jerry Silver

Spinal Cord and Brain Injury Research Center Faculty Publications

Spinal cord injury (SCI) above cervical level 4 disrupts descending axons from the medulla that innervate phrenic motor neurons, causing permanent paralysis of the diaphragm. Using an ex vivo preparation in neonatal mice, we have identified an excitatory spinal network that can direct phrenic motor bursting in the absence of medullary input. After complete cervical SCI, blockade of fast inhibitory synaptic transmission caused spontaneous, bilaterally coordinated phrenic bursting. Here, spinal cord glutamatergic neurons were both sufficient and necessary for the induction of phrenic bursts. Direct stimulation of phrenic motor neurons was insufficient to evoke burst activity. Transection and pharmacological manipulations …


Targeting Mitochondrial Dysfunction In Cns Injury Using Methylene Blue; Still A Magic Bullet?, Hemendra J. Vekaria, Lora Talley Watts, Ai-Ling Lin, Patrick G. Sullivan Oct 2017

Targeting Mitochondrial Dysfunction In Cns Injury Using Methylene Blue; Still A Magic Bullet?, Hemendra J. Vekaria, Lora Talley Watts, Ai-Ling Lin, Patrick G. Sullivan

Spinal Cord and Brain Injury Research Center Faculty Publications

Complex, multi-factorial secondary injury cascades are initiated following traumatic brain injury, which makes this a difficult disease to treat. The secondary injury cascades following the primary mechanical tissue damage, are likely where effective therapeutic interventions may be targeted. One promising therapeutic target following brain injury are mitochondria. Mitochondria are complex organelles found within the cell, which act as powerhouses within all cells by supplying ATP. These organelles are also necessary for calcium cycling, redox signaling and play a major role in the initiation of cell death pathways. When mitochondria become dysfunctional, there is a tendency for the cell to loose …


Acute Treatment With Doxorubicin Affects Glutamate Neurotransmission In The Mouse Frontal Cortex And Hippocampus, Theresa Currier Thomas, Joshua A. Beitchman, Francois Pomerleau, Teresa Noel, Paiboon Jungsuwadee, D. Allan Butterfield, Daret K. St. Clair, Mary Vore, Greg A. Gerhardt Oct 2017

Acute Treatment With Doxorubicin Affects Glutamate Neurotransmission In The Mouse Frontal Cortex And Hippocampus, Theresa Currier Thomas, Joshua A. Beitchman, Francois Pomerleau, Teresa Noel, Paiboon Jungsuwadee, D. Allan Butterfield, Daret K. St. Clair, Mary Vore, Greg A. Gerhardt

Spinal Cord and Brain Injury Research Center Faculty Publications

Doxorubicin (DOX) is a potent chemotherapeutic agent known to cause acute and long-term cognitive impairments in cancer patients. Cognitive function is presumed to be primarily mediated by neuronal circuitry in the frontal cortex (FC) and hippocampus, where glutamate is the primary excitatory neurotransmitter. Mice treated with DOX (25 mg/kg i.p.) were subjected to in vivo recordings under urethane anesthesia at 24h post-DOX injection or 5 consecutive days of cognitive testing (Morris Water Maze; MWM). Using novel glutamate-selective microelectrode arrays, amperometric recordings measured parameters of extracellular glutamate clearance and potassium-evoked release of glutamate within the medial FC and dentate gyrus (DG) …


Carisbamate Blockade Of T-Type Voltage-Gated Calcium Channels, Do Young Kim, Fang-Xiong Zhang, Stan T. Nakanishi, Timothy Mettler, Ik-Hyun Cho, Younghee Ahn, Florian Hiess, Lina Chen, Patrick G. Sullivan, S. R. Wayne Chen, Gerald W. Zamponi, Jong M. Rho Apr 2017

Carisbamate Blockade Of T-Type Voltage-Gated Calcium Channels, Do Young Kim, Fang-Xiong Zhang, Stan T. Nakanishi, Timothy Mettler, Ik-Hyun Cho, Younghee Ahn, Florian Hiess, Lina Chen, Patrick G. Sullivan, S. R. Wayne Chen, Gerald W. Zamponi, Jong M. Rho

Spinal Cord and Brain Injury Research Center Faculty Publications

Objectives

Carisbamate (CRS) is a novel monocarbamate compound that possesses antiseizure and neuroprotective properties. However, the mechanisms underlying these actions remain unclear. Here, we tested both direct and indirect effects of CRS on several cellular systems that regulate intracellular calcium concentration [Ca2+]i.

Methods

We used a combination of cellular electrophysiologic techniques, as well as cell viability, Store Overload‐Induced Calcium Release (SOICR), and mitochondrial functional assays to determine whether CRS might affect [Ca2+]i levels through actions on the endoplasmic reticulum (ER), mitochondria, and/or T‐type voltage‐gated Ca2+ channels.

Results

In CA3 pyramidal neurons, kainic …