Open Access. Powered by Scholars. Published by Universities.®

Neurology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Neurology

Mitochondrial Mislocalization Underlies Abeta42-Induced Neuronal Dysfunction In A Drosophila Model Of Alzheimer's Disease., Kanae Iijima-Ando, Stephen A Hearn, Christopher Shenton, Anthony Gatt, Lijuan Zhao, Koichi Iijima Dec 2009

Mitochondrial Mislocalization Underlies Abeta42-Induced Neuronal Dysfunction In A Drosophila Model Of Alzheimer's Disease., Kanae Iijima-Ando, Stephen A Hearn, Christopher Shenton, Anthony Gatt, Lijuan Zhao, Koichi Iijima

Department of Biochemistry and Molecular Biology Faculty Papers

The amyloid-beta 42 (Abeta42) is thought to play a central role in the pathogenesis of Alzheimer's disease (AD). However, the molecular mechanisms by which Abeta42 induces neuronal dysfunction and degeneration remain elusive. Mitochondrial dysfunctions are implicated in AD brains. Whether mitochondrial dysfunctions are merely a consequence of AD pathology, or are early seminal events in AD pathogenesis remains to be determined. Here, we show that Abeta42 induces mitochondrial mislocalization, which contributes to Abeta42-induced neuronal dysfunction in a transgenic Drosophila model. In the Abeta42 fly brain, mitochondria were reduced in axons and dendrites, and accumulated in the somata without severe mitochondrial …


Prion Protein Glycosylation Is Not Required For Strain-Specific Neurotropism, Justin R. Piro, Brent T. Harris, Koren Nishina, Claudio Soto, Rodrigo Morales, Judy R. Rees, Surachai Supattapone Jun 2009

Prion Protein Glycosylation Is Not Required For Strain-Specific Neurotropism, Justin R. Piro, Brent T. Harris, Koren Nishina, Claudio Soto, Rodrigo Morales, Judy R. Rees, Surachai Supattapone

Dartmouth Scholarship

In this study, we tested the hypothesis that the glycosylation of the pathogenic isoform of the prion protein (PrPSc) might encode the selective neurotropism of prion strains. We prepared unglycosylated cellular prion protein (PrPC) substrate molecules from normal mouse brain by treatment with PNGase F and used reconstituted serial protein cyclic misfolding amplification reactions to produce RML and 301C mouse prions containing unglycosylated PrPSc molecules. Both RML- and 301C-derived prions containing unglycosylated PrPSc molecules were infectious to wild-type mice, and neuropathological analysis showed that mice inoculated with these samples maintained strain-specific patterns of PrP …