Open Access. Powered by Scholars. Published by Universities.®

Geriatrics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Geriatrics

Abcc9/Sur2 In The Brain: Implications For Hippocampal Sclerosis Of Aging And A Potential Therapeutic Target, Peter T. Nelson, Gregory A. Jicha, Wang-Xia Wang, Eseosa T. Ighodaro, Sergey C. Artiushin, Colin G. Nichols, David W. Fardo Nov 2015

Abcc9/Sur2 In The Brain: Implications For Hippocampal Sclerosis Of Aging And A Potential Therapeutic Target, Peter T. Nelson, Gregory A. Jicha, Wang-Xia Wang, Eseosa T. Ighodaro, Sergey C. Artiushin, Colin G. Nichols, David W. Fardo

Sanders-Brown Center on Aging Faculty Publications

The ABCC9 gene and its polypeptide product, SUR2, are increasingly implicated in human neurologic disease, including prevalent diseases of the aged brain. SUR2 proteins are a component of the ATP-sensitive potassium (“K ATP ”) channel, a metabolic sensor for stress and/or hypoxia that has been shown to change in aging. The K ATP channel also helps regulate the neurovascular unit. Most brain cell types express SUR2, including neurons, astrocytes, oligodendrocytes, microglia, vascular smooth muscle, pericytes, and endothelial cells. Thus it is not surprising that ABCC9 gene variants are associated with risk for human brain diseases. For example, Cantu syndrome is …


Closed Head Injury In An Age-Related Alzheimer Mouse Model Leads To An Altered Neuroinflammatory Response And Persistent Cognitive Impairment, Scott J. Webster, Linda J. Van Eldik, D. Martin Watterson, Adam D. Bachstetter Apr 2015

Closed Head Injury In An Age-Related Alzheimer Mouse Model Leads To An Altered Neuroinflammatory Response And Persistent Cognitive Impairment, Scott J. Webster, Linda J. Van Eldik, D. Martin Watterson, Adam D. Bachstetter

Sanders-Brown Center on Aging Faculty Publications

Epidemiological studies have associated increased risk of Alzheimer's disease (AD)-related clinical symptoms with a medical history of head injury. Currently, little is known about pathophysiology mechanisms linked to this association. Persistent neuroinflammation is one outcome observed in patients after a single head injury. Neuroinflammation is also present early in relevant brain regions during AD pathology progression. In addition, previous mechanistic studies in animal models link neuroinflammation as a contributor to neuropathology and cognitive impairment in traumatic brain injury (TBI) or AD-related models. Therefore, we explored the potential interplay of neuroinflammatory responses in TBI and AD by analysis of the temporal …


Mitochondria-Associated Micrornas In Rat Hippocampus Following Traumatic Brain Injury, Wang-Xia Wang, Nishant P. Visavadiya, Jignesh D. Pandya, Peter T. Nelson, Patrick G. Sullivan, Joe E. Springer Mar 2015

Mitochondria-Associated Micrornas In Rat Hippocampus Following Traumatic Brain Injury, Wang-Xia Wang, Nishant P. Visavadiya, Jignesh D. Pandya, Peter T. Nelson, Patrick G. Sullivan, Joe E. Springer

Sanders-Brown Center on Aging Faculty Publications

Traumatic brain injury (TBI) is a major cause of death and disability. However, the molecular events contributing to the pathogenesis are not well understood. Mitochondria serve as the powerhouse of cells, respond to cellular demands and stressors, and play an essential role in cell signaling, differentiation, and survival. There is clear evidence of compromised mitochondrial function following TBI; however, the underlying mechanisms and consequences are not clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally, and function as important mediators of neuronal development, synaptic plasticity, and neurodegeneration. Several miRNAs show altered expression following TBI; however, the …