Open Access. Powered by Scholars. Published by Universities.®

Geriatrics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Geriatrics

Astrocyte Activation And The Calcineurin/Nfat Pathway In Cerebrovascular Disease, Susan D. Kraner, Christopher M. Norris Sep 2018

Astrocyte Activation And The Calcineurin/Nfat Pathway In Cerebrovascular Disease, Susan D. Kraner, Christopher M. Norris

Sanders-Brown Center on Aging Faculty Publications

Calcineurin (CN) is a Ca2+/calmodulin-dependent protein phosphatase with high abundance in nervous tissue. Though enriched in neurons, CN can become strongly induced in subsets of activated astrocytes under different pathological conditions where it interacts extensively with the nuclear factor of activated T cells (NFATs). Recent work has shown that regions of small vessel damage are associated with the upregulation of a proteolized, highly active form of CN in nearby astrocytes, suggesting a link between the CN/NFAT pathway and chronic cerebrovascular disease. In this Mini Review article, we discuss CN/NFAT signaling properties in the context of vascular disease and …


Ca2+, Astrocyte Activation And Calcineurin/Nfat Signaling In Age-Related Neurodegenerative Diseases, Pradoldej Sompol, Christopher M. Norris Jul 2018

Ca2+, Astrocyte Activation And Calcineurin/Nfat Signaling In Age-Related Neurodegenerative Diseases, Pradoldej Sompol, Christopher M. Norris

Sanders-Brown Center on Aging Faculty Publications

Mounting evidence supports a fundamental role for Ca2+ dysregulation in astrocyte activation. Though the activated astrocyte phenotype is complex, cell-type targeting approaches have revealed a number of detrimental roles of activated astrocytes involving neuroinflammation, release of synaptotoxic factors and loss of glutamate regulation. Work from our lab and others has suggested that the Ca2+/calmodulin dependent protein phosphatase, calcineurin (CN), provides a critical link between Ca2+ dysregulation and the activated astrocyte phenotype. A proteolyzed, hyperactivated form of CN appears at high levels in activated astrocytes in both human tissue and rodent tissue around regions of amyloid and …


Attenuation Of Traumatic Brain Injury-Induced Cognitive Impairment In Mice By Targeting Increased Cytokine Levels With A Small Molecule Experimental Therapeutic, Adam D. Bachstetter, Scott J. Webster, Danielle S. Goulding, Jonathan E. Morton, D. Martin Watterson, Linda J. Van Eldik Apr 2015

Attenuation Of Traumatic Brain Injury-Induced Cognitive Impairment In Mice By Targeting Increased Cytokine Levels With A Small Molecule Experimental Therapeutic, Adam D. Bachstetter, Scott J. Webster, Danielle S. Goulding, Jonathan E. Morton, D. Martin Watterson, Linda J. Van Eldik

Sanders-Brown Center on Aging Faculty Publications

BACKGROUND: Evidence from clinical studies and preclinical animal models suggests that proinflammatory cytokine overproduction is a potential driving force for pathology progression in traumatic brain injury (TBI). This raises the possibility that selective targeting of the overactive cytokine response, a component of the neuroinflammation that contributes to neuronal dysfunction, may be a useful therapeutic approach. MW151 is a CNS-penetrant, small molecule experimental therapeutic that selectively restores injury- or disease-induced overproduction of proinflammatory cytokines towards homeostasis. We previously reported that MW151 administered post-injury (p.i.) is efficacious in a closed head injury (CHI) model of diffuse TBI in mice. Here we test …