Open Access. Powered by Scholars. Published by Universities.®

Geriatrics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Geriatrics

Hyperhomocysteinemia As A Risk Factor For Vascular Contributions To Cognitive Impairment And Dementia, Brittani R. Price, Donna M. Wilcock, Erica M. Weekman Oct 2018

Hyperhomocysteinemia As A Risk Factor For Vascular Contributions To Cognitive Impairment And Dementia, Brittani R. Price, Donna M. Wilcock, Erica M. Weekman

Physiology Faculty Publications

Behind only Alzheimer’s disease, vascular contributions to cognitive impairment and dementia (VCID) is the second most common cause of dementia, affecting roughly 10–40% of dementia patients. While there is no cure for VCID, several risk factors for VCID, such as diabetes, hypertension, and stroke, have been identified. Elevated plasma levels of homocysteine, termed hyperhomocysteinemia (HHcy), are a major, yet underrecognized, risk factor for VCID. B vitamin deficiency, which is the most common cause of HHcy, is common in the elderly. With B vitamin supplementation being a relatively safe and inexpensive therapeutic, the treatment of HHcy-induced VCID would seem straightforward; however, …


Astrocyte Activation And The Calcineurin/Nfat Pathway In Cerebrovascular Disease, Susan D. Kraner, Christopher M. Norris Sep 2018

Astrocyte Activation And The Calcineurin/Nfat Pathway In Cerebrovascular Disease, Susan D. Kraner, Christopher M. Norris

Sanders-Brown Center on Aging Faculty Publications

Calcineurin (CN) is a Ca2+/calmodulin-dependent protein phosphatase with high abundance in nervous tissue. Though enriched in neurons, CN can become strongly induced in subsets of activated astrocytes under different pathological conditions where it interacts extensively with the nuclear factor of activated T cells (NFATs). Recent work has shown that regions of small vessel damage are associated with the upregulation of a proteolized, highly active form of CN in nearby astrocytes, suggesting a link between the CN/NFAT pathway and chronic cerebrovascular disease. In this Mini Review article, we discuss CN/NFAT signaling properties in the context of vascular disease and …


Ca2+, Astrocyte Activation And Calcineurin/Nfat Signaling In Age-Related Neurodegenerative Diseases, Pradoldej Sompol, Christopher M. Norris Jul 2018

Ca2+, Astrocyte Activation And Calcineurin/Nfat Signaling In Age-Related Neurodegenerative Diseases, Pradoldej Sompol, Christopher M. Norris

Sanders-Brown Center on Aging Faculty Publications

Mounting evidence supports a fundamental role for Ca2+ dysregulation in astrocyte activation. Though the activated astrocyte phenotype is complex, cell-type targeting approaches have revealed a number of detrimental roles of activated astrocytes involving neuroinflammation, release of synaptotoxic factors and loss of glutamate regulation. Work from our lab and others has suggested that the Ca2+/calmodulin dependent protein phosphatase, calcineurin (CN), provides a critical link between Ca2+ dysregulation and the activated astrocyte phenotype. A proteolyzed, hyperactivated form of CN appears at high levels in activated astrocytes in both human tissue and rodent tissue around regions of amyloid and …