Open Access. Powered by Scholars. Published by Universities.®

Cardiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Cardiology

Comparison Of Left Ventricular Strains And Torsion Derived From Feature Tracking And Dense Cmr, Gregory J. Wehner, Linyuan Jing, Christopher M. Haggerty, Jonathan D. Suever, Jing Chen, Sean M. Hamlet, Jared A. Feindt, Walter Dimitri Mojsejenko, Mark A. Fogel, Brandon K. Fornwalt Sep 2018

Comparison Of Left Ventricular Strains And Torsion Derived From Feature Tracking And Dense Cmr, Gregory J. Wehner, Linyuan Jing, Christopher M. Haggerty, Jonathan D. Suever, Jing Chen, Sean M. Hamlet, Jared A. Feindt, Walter Dimitri Mojsejenko, Mark A. Fogel, Brandon K. Fornwalt

Biomedical Engineering Faculty Publications

Background: Cardiovascular magnetic resonance (CMR) feature tracking is increasingly used to quantify cardiac mechanics from cine CMR imaging, although validation against reference standard techniques has been limited. Furthermore, studies have suggested that commonly-derived metrics, such as peak global strain (reported in 63% of feature tracking studies), can be quantified using contours from just two frames – end-diastole (ED) and end-systole (ES) – without requiring tracking software. We hypothesized that mechanics derived from feature tracking would not agree with those derived from a reference standard (displacement-encoding with stimulated echoes (DENSE) imaging), and that peak strain from feature tracking would agree with …


A Study Of Acoustically Activated Nanodroplets, Songita Choudhury May 2018

A Study Of Acoustically Activated Nanodroplets, Songita Choudhury

Theses & Dissertations

Current treatment of acute myocardial infarction (AMI), which is the main pathophysiological event leading to death in the United States, has advanced considerably with the introduction of emergent percutaneous interventions, but there remains an urgent need for novel techniques to rapidly and accurately detect infarcted or ischemic tissue that results from AMI. Ultrasound contrast agents, also known as microbubbles (MB), have become commonplace in echocardiography. However, MBs are purely intravascular tracers and unable to cross endothelial barriers due to size. The limitations of MBs, namely size and short circulation times within the human body, led to the development of phase-change …


Extraction And Analysis Of Vector Flow Imaging Data In A Pediatric Population, Bailey Stinnett May 2018

Extraction And Analysis Of Vector Flow Imaging Data In A Pediatric Population, Bailey Stinnett

Biomedical Engineering Undergraduate Honors Theses

Vector flow imaging (VFI) is a new ultrasound technology that provides real time, angle-independent visualization of flow velocities in the heart and great vessels. Thus far, VFI has been used for superficial applications due to the limited penetration depth of available transducer probes; however, this depth in smaller pediatric patients enables adequate aortic views. In this project, VFI was used to study pediatric aortic stenosis (PAS)—a congenital heart defect that results in the narrowing of the aorta and/or aortic valve. The decision to refer PAS patients for surgical or catheter-based intervention is initially based on Doppler ultrasound. VFI is potentially …


Quantum Confined Peptide Assemblies With Tunable Visible To Near-Infrared Spectral Range, Kai Tao, Zhen Fan, Leming Sun, Pandeeswar Makam, Zhen Tian, Mark Ruegsegger, Shira Shaham-Niv, Derek Hansford, Ruth Aizen, Zui Pan, Scott Galster, Jianjie Ma, Fan Yuan, Mingsu Si, Songnan Qu, Mingjun Zhang, Ehud Gazit, Junbai Li Jan 2018

Quantum Confined Peptide Assemblies With Tunable Visible To Near-Infrared Spectral Range, Kai Tao, Zhen Fan, Leming Sun, Pandeeswar Makam, Zhen Tian, Mark Ruegsegger, Shira Shaham-Niv, Derek Hansford, Ruth Aizen, Zui Pan, Scott Galster, Jianjie Ma, Fan Yuan, Mingsu Si, Songnan Qu, Mingjun Zhang, Ehud Gazit, Junbai Li

Faculty & Staff Scholarship

Quantum confined materials have been extensively studied for photoluminescent applica- tions. Due to intrinsic limitations of low biocompatibility and challenging modulation, the utilization of conventional inorganic quantum confined photoluminescent materials in bio- imaging and bio-machine interface faces critical restrictions. Here, we present aromatic cyclo-dipeptides that dimerize into quantum dots, which serve as building blocks to further self-assemble into quantum confined supramolecular structures with diverse morphologies and photoluminescence properties. Especially, the emission can be tuned from the visible region to the near-infrared region (420 nm to 820 nm) by modulating the self-assembly process. Moreover, no obvious cytotoxic effect is observed for …