Open Access. Powered by Scholars. Published by Universities.®

Neurosciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Neurosciences

Human Neuroimaging Reveals The Subcomponents Of Grasping, Reaching And Pointing Actions., Cristiana Cavina-Pratesi, Jason D Connolly, Simona Monaco, Teresa D Figley, A David Milner, Thomas Schenk, Jody C Culham Jan 2018

Human Neuroimaging Reveals The Subcomponents Of Grasping, Reaching And Pointing Actions., Cristiana Cavina-Pratesi, Jason D Connolly, Simona Monaco, Teresa D Figley, A David Milner, Thomas Schenk, Jody C Culham

Brain and Mind Institute Researchers' Publications

Although the neural underpinnings of visually guided grasping and reaching have been well delineated within lateral and medial fronto-parietal networks (respectively), the contributions of subcomponents of visuomotor actions have not been explored in detail. Using careful subtraction logic, here we investigated which aspects of grasping, reaching, and pointing movements drive activation across key areas within visuomotor networks implicated in hand actions. For grasping tasks, we find activation differences based on the precision required (fine > coarse grip: anterior intraparietal sulcus, aIPS), the requirement to lift the object (grip + lift > grip: aIPS; dorsal premotor cortex, PMd; and supplementary motor area, SMA), …


A Trial-By-Trial Window Into Sensorimotor Transformations In The Human Motor Periphery., Chao Gu, Daniel K Wood, Paul L Gribble, Brian D Corneil Aug 2016

A Trial-By-Trial Window Into Sensorimotor Transformations In The Human Motor Periphery., Chao Gu, Daniel K Wood, Paul L Gribble, Brian D Corneil

Brain and Mind Institute Researchers' Publications

UNLABELLED: The appearance of a novel visual stimulus generates a rapid stimulus-locked response (SLR) in the motor periphery within 100 ms of stimulus onset. Here, we recorded SLRs from an upper limb muscle while humans reached toward (pro-reach) or away (anti-reach) from a visual stimulus. The SLR on anti-reaches encoded the location of the visual stimulus rather than the movement goal. Further, SLR magnitude was attenuated when subjects reached away from rather than toward the visual stimulus. Remarkably, SLR magnitudes also correlated with reaction times on both pro-reaches and anti-reaches, but did so in opposite ways: larger SLRs preceded shorter …


Sensory Plasticity In Human Motor Learning., David J Ostry, Paul L Gribble Feb 2016

Sensory Plasticity In Human Motor Learning., David J Ostry, Paul L Gribble

Brain and Mind Institute Researchers' Publications

There is accumulating evidence from behavioral, neurophysiological, and neuroimaging studies that the acquisition of motor skills involves both perceptual and motor learning. Perceptual learning alters movements, motor learning, and motor networks of the brain. Motor learning changes perceptual function and the sensory circuits of the brain. Here, we review studies of both human limb movement and speech that indicate that plasticity in sensory and motor systems is reciprocally linked. Taken together, this points to an approach to motor learning in which perceptual learning and sensory plasticity have a fundamental role.


Planning Ahead: Object-Directed Sequential Actions Decoded From Human Frontoparietal And Occipitotemporal Networks., Jason P Gallivan, Ingrid S Johnsrude, J Randall Flanagan Feb 2016

Planning Ahead: Object-Directed Sequential Actions Decoded From Human Frontoparietal And Occipitotemporal Networks., Jason P Gallivan, Ingrid S Johnsrude, J Randall Flanagan

Brain and Mind Institute Researchers' Publications

Object-manipulation tasks (e.g., drinking from a cup) typically involve sequencing together a series of distinct motor acts (e.g., reaching toward, grasping, lifting, and transporting the cup) in order to accomplish some overarching goal (e.g., quenching thirst). Although several studies in humans have investigated the neural mechanisms supporting the planning of visually guided movements directed toward objects (such as reaching or pointing), only a handful have examined how manipulatory sequences of actions-those that occur after an object has been grasped-are planned and represented in the brain. Here, using event-related functional MRI and pattern decoding methods, we investigated the neural basis of …


The Human Motor System Alters Its Reaching Movement Plan For Task-Irrelevant, Positional Forces., Joshua G A Cashaback, Heather R Mcgregor, Paul L Gribble Apr 2015

The Human Motor System Alters Its Reaching Movement Plan For Task-Irrelevant, Positional Forces., Joshua G A Cashaback, Heather R Mcgregor, Paul L Gribble

Brain and Mind Institute Researchers' Publications

The minimum intervention principle and the uncontrolled manifold hypothesis state that our nervous system only responds to force perturbations and sensorimotor noise if they affect task success. This idea has been tested in muscle and joint coordinate frames and more recently using workspace redundancy (e.g., reaching to large targets). However, reaching studies typically involve spatial and or temporal constraints. Constrained reaches represent a small proportion of movements we perform daily and may limit the emergence of natural behavior. Using more relaxed constraints, we conducted two reaching experiments to test the hypothesis that humans respond to task-relevant forces and ignore task-irrelevant …


The Cost Of Moving Optimally: Kinematic Path Selection., Dinant A Kistemaker, Jeremy D Wong, Paul L Gribble Oct 2014

The Cost Of Moving Optimally: Kinematic Path Selection., Dinant A Kistemaker, Jeremy D Wong, Paul L Gribble

Brain and Mind Institute Researchers' Publications

It is currently unclear whether the brain plans movement kinematics explicitly or whether movement paths arise implicitly through optimization of a cost function that takes into account control and/or dynamic variables. Several cost functions are proposed in the literature that are very different in nature (e.g., control effort, torque change, and jerk), yet each can predict common movement characteristics. We set out to disentangle predictions of the different variables using a combination of modeling and empirical studies. Subjects performed goal-directed arm movements in a force field (FF) in combination with visual perturbations of seen hand position. This FF was designed …


Human Premotor Areas Parse Sequences Into Their Spatial And Temporal Features., Katja Kornysheva, Jörn Diedrichsen Aug 2014

Human Premotor Areas Parse Sequences Into Their Spatial And Temporal Features., Katja Kornysheva, Jörn Diedrichsen

Brain and Mind Institute Researchers' Publications

Skilled performance is characterized by precise and flexible control of movement sequences in space and time. Recent theories suggest that integrated spatio-temporal trajectories are generated by intrinsic dynamics of motor and premotor networks. This contrasts with behavioural advantages that emerge when a trained spatial or temporal feature of sequences is transferred to a new spatio-temporal combination arguing for independent neural representations of these sequence features. We used a new fMRI pattern classification approach to identify brain regions with independent vs integrated representations. A distinct regional dissociation within motor areas was revealed: whereas only the contralateral primary motor cortex exhibited unique …


Effector-Independent Motor Sequence Representations Exist In Extrinsic And Intrinsic Reference Frames., Tobias Wiestler, Sheena Waters-Metenier, Jörn Diedrichsen Apr 2014

Effector-Independent Motor Sequence Representations Exist In Extrinsic And Intrinsic Reference Frames., Tobias Wiestler, Sheena Waters-Metenier, Jörn Diedrichsen

Brain and Mind Institute Researchers' Publications

Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in intrinsic/body-centered coordinates. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to determine the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences with one hand for 4 d, and then performed these sequences …


A Dedicated Binding Mechanism For The Visual Control Of Movement., Alexandra Reichenbach, David W Franklin, Peter Zatka-Haas, Jörn Diedrichsen Mar 2014

A Dedicated Binding Mechanism For The Visual Control Of Movement., Alexandra Reichenbach, David W Franklin, Peter Zatka-Haas, Jörn Diedrichsen

Brain and Mind Institute Researchers' Publications

The human motor system is remarkably proficient in the online control of visually guided movements, adjusting to changes in the visual scene within 100 ms [1-3]. This is achieved through a set of highly automatic processes [4] translating visual information into representations suitable for motor control [5, 6]. For this to be accomplished, visual information pertaining to target and hand need to be identified and linked to the appropriate internal representations during the movement. Meanwhile, other visual information must be filtered out, which is especially demanding in visually cluttered natural environments. If selection of relevant sensory information for online control …


Dynamic And Opposing Adjustment Of Movement Cancellation And Generation In An Oculomotor Countermanding Task., Brian D Corneil, Joshua C Cheng, Samanthi C Goonetilleke Jun 2013

Dynamic And Opposing Adjustment Of Movement Cancellation And Generation In An Oculomotor Countermanding Task., Brian D Corneil, Joshua C Cheng, Samanthi C Goonetilleke

Brain and Mind Institute Researchers' Publications

Adaptive adjustments of strategies help optimize behavior in a dynamic and uncertain world. Previous studies in the countermanding (or stop-signal) paradigm have detailed how reaction times (RTs) change with trial sequence, demonstrating adaptive control of movement generation. Comparatively little is known about the adaptive control of movement cancellation in the countermanding task, mainly because movement cancellation implies the absence of an outcome and estimates of movement cancellation require hundreds of trials. Here, we exploit a within-trial proxy of movement cancellation based on recordings of neck muscle activity while human subjects attempted to cancel large eye-head gaze shifts. On a subset …


Two Distinct Ipsilateral Cortical Representations For Individuated Finger Movements., Jörn Diedrichsen, Tobias Wiestler, John W Krakauer Jun 2013

Two Distinct Ipsilateral Cortical Representations For Individuated Finger Movements., Jörn Diedrichsen, Tobias Wiestler, John W Krakauer

Brain and Mind Institute Researchers' Publications

Movements of the upper limb are controlled mostly through the contralateral hemisphere. Although overall activity changes in the ipsilateral motor cortex have been reported, their functional significance remains unclear. Using human functional imaging, we analyzed neural finger representations by studying differences in fine-grained activation patterns for single isometric finger presses. We demonstrate that cortical motor areas encode ipsilateral movements in 2 fundamentally different ways. During unimanual ipsilateral finger presses, primary sensory and motor cortices show, underneath global suppression, finger-specific activity patterns that are nearly identical to those elicited by contralateral mirror-symmetric action. This component vanishes when both motor cortices are …


Encoding Of Sensory Prediction Errors In The Human Cerebellum., John Schlerf, Richard B Ivry, Jörn Diedrichsen Apr 2012

Encoding Of Sensory Prediction Errors In The Human Cerebellum., John Schlerf, Richard B Ivry, Jörn Diedrichsen

Brain and Mind Institute Researchers' Publications

A central tenet of motor neuroscience is that the cerebellum learns from sensory prediction errors. Surprisingly, neuroimaging studies have not revealed definitive signatures of error processing in the cerebellum. Furthermore, neurophysiologic studies suggest an asymmetry, such that the cerebellum may encode errors arising from unexpected sensory events, but not errors reflecting the omission of expected stimuli. We conducted an imaging study to compare the cerebellar response to these two types of errors. Participants made fast out-and-back reaching movements, aiming either for an object that delivered a force pulse if intersected or for a gap between two objects, either of which …


Bimanual Reaching Across The Hemispace: Which Hand Is Yoked To Which?, Gavin Buckingham, Gordon Binsted, David Carey Nov 2010

Bimanual Reaching Across The Hemispace: Which Hand Is Yoked To Which?, Gavin Buckingham, Gordon Binsted, David Carey

Gavin Buckingham

When both hands perform concurrent goal-directed reaches, they become yoked to one another. To investigate the direction of this coupling (i.e., which hand is yoked to which), the temporal dynamics of bimanual reaches were compared with equivalent-amplitude unimanual reaches. These reaches were to target pairs located on either the left or right sides of space; meaning that in the bimanual condition, one hand's contralateral (more difficult) reach accompanied by the other hand's ipsilateral (easier) reach. By comparing which hand's difficult reach was improved more by the presence of the other hand's easier ipsilateral reach, we were able to demonstrate asymmetries …


Gating Of Vibrotactile Detection During Visually Guided Bimanual Reaches, Gavin Buckingham, David Carey, Francisco Colino, John Degrosbois, Gordon Binsted Feb 2010

Gating Of Vibrotactile Detection During Visually Guided Bimanual Reaches, Gavin Buckingham, David Carey, Francisco Colino, John Degrosbois, Gordon Binsted

Gavin Buckingham

It is far more difficult to detect a small tactile stimulation on a finger that is moving compared to when it is static. This suppression of tactile information during motion, known as tactile gating, has been examined in some detail during single-joint movements. However, the existence and time course of this gating has yet to be examined during visually guided multi-joint reaches, where sensory feedback may be paramount. The current study demonstrated that neurologically intact humans are unable to detect a small vibratory stimulus on one of their index fingers during a bimanual reach toward visual targets. By parametrically altering …


Human Parietal "Reach Region" Primarily Encodes Intrinsic Visual Direction, Not Extrinsic Movement Direction, In A Visual Motor Dissociation Task., Juan Fernandez-Ruiz, Herbert C Goltz, Joseph F X Desouza, Tutis Vilis, J Douglas Crawford Oct 2007

Human Parietal "Reach Region" Primarily Encodes Intrinsic Visual Direction, Not Extrinsic Movement Direction, In A Visual Motor Dissociation Task., Juan Fernandez-Ruiz, Herbert C Goltz, Joseph F X Desouza, Tutis Vilis, J Douglas Crawford

Brain and Mind Institute Researchers' Publications

Posterior parietal cortex (PPC) participates in the planning of visuospatial behaviors, including reach movements, in gaze-centered coordinates. It is not known if these representations encode the visual goal in retinal coordinates, or the movement direction relative to gaze. Here, by dissociating the intrinsic retinal stimulus from the extrinsic direction of movement, we show that PPC employs a visual code. Using delayed pointing and event-related functional magnetic resonance imaging, we identified a cluster of PPC regions whose activity was topographically (contralaterally) related to the direction of the planned movement. We then switched the normal visual-motor spatial relationship by adapting subjects to …


Gaze-Centered Updating Of Visual Space In Human Parietal Cortex., W Pieter Medendorp, Herbert C Goltz, Tutis Vilis, J Douglas Crawford Jul 2003

Gaze-Centered Updating Of Visual Space In Human Parietal Cortex., W Pieter Medendorp, Herbert C Goltz, Tutis Vilis, J Douglas Crawford

Brain and Mind Institute Researchers' Publications

Single-unit recordings have identified a region in the posterior parietal cortex (PPC) of the monkey that represents and updates visual space in a gaze-centered frame. Here, using event-related functional magnetic resonance imaging, we identified an analogous bilateral region in the human PPC that shows contralateral topography for memory-guided eye movements and arm movements. Furthermore, when eye movements reversed the remembered horizontal target location relative to the gaze fixation point, this PPC region exchanged activity across the two cortical lobules. This shows that the human PPC dynamically updates the spatial goals for action in a gaze-centered frame.


Eye Position Signal Modulates A Human Parietal Pointing Region During Memory-Guided Movements., J F Desouza, S P Dukelow, J S Gati, R S Menon, R A Andersen, T Vilis Aug 2000

Eye Position Signal Modulates A Human Parietal Pointing Region During Memory-Guided Movements., J F Desouza, S P Dukelow, J S Gati, R S Menon, R A Andersen, T Vilis

Brain and Mind Institute Researchers' Publications

Using functional magnetic resonance imaging, we examined the signal in parietal regions that were selectively activated during delayed pointing to flashed visual targets and determined whether this signal was dependent on the fixation position of the eyes. Delayed pointing activated a bilateral parietal area in the intraparietal sulcus (rIPS), rostral/anterior to areas activated by saccades. During right-hand pointing to centrally located targets, the left rIPS region showed a significant increase in activation when the eye position was rightward compared with leftward. As expected, activation in motor cortex showed no modulation when only eye position changed. During pointing to retinotopically identical …