Open Access. Powered by Scholars. Published by Universities.®

Medical Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Neurobiology

Mitochondrial Mislocalization Underlies Abeta42-Induced Neuronal Dysfunction In A Drosophila Model Of Alzheimer's Disease., Kanae Iijima-Ando, Stephen A Hearn, Christopher Shenton, Anthony Gatt, Lijuan Zhao, Koichi Iijima Dec 2009

Mitochondrial Mislocalization Underlies Abeta42-Induced Neuronal Dysfunction In A Drosophila Model Of Alzheimer's Disease., Kanae Iijima-Ando, Stephen A Hearn, Christopher Shenton, Anthony Gatt, Lijuan Zhao, Koichi Iijima

Department of Biochemistry and Molecular Biology Faculty Papers

The amyloid-beta 42 (Abeta42) is thought to play a central role in the pathogenesis of Alzheimer's disease (AD). However, the molecular mechanisms by which Abeta42 induces neuronal dysfunction and degeneration remain elusive. Mitochondrial dysfunctions are implicated in AD brains. Whether mitochondrial dysfunctions are merely a consequence of AD pathology, or are early seminal events in AD pathogenesis remains to be determined. Here, we show that Abeta42 induces mitochondrial mislocalization, which contributes to Abeta42-induced neuronal dysfunction in a transgenic Drosophila model. In the Abeta42 fly brain, mitochondria were reduced in axons and dendrites, and accumulated in the somata without severe mitochondrial …


Abeta42 Mutants With Different Aggregation Profiles Induce Distinct Pathologies In Drosophila., Koichi Iijima, Hsueh-Cheng Chiang, Stephen A Hearn, Inessa Hakker, Anthony Gatt, Christopher Shenton, Linda Granger, Amy Leung, Kanae Iijima-Ando, Yi Zhong Feb 2008

Abeta42 Mutants With Different Aggregation Profiles Induce Distinct Pathologies In Drosophila., Koichi Iijima, Hsueh-Cheng Chiang, Stephen A Hearn, Inessa Hakker, Anthony Gatt, Christopher Shenton, Linda Granger, Amy Leung, Kanae Iijima-Ando, Yi Zhong

Department of Biochemistry and Molecular Biology Faculty Papers

Aggregation of the amyloid-beta-42 (Abeta42) peptide in the brain parenchyma is a pathological hallmark of Alzheimer's disease (AD), and the prevention of Abeta aggregation has been proposed as a therapeutic intervention in AD. However, recent reports indicate that Abeta can form several different prefibrillar and fibrillar aggregates and that each aggregate may confer different pathogenic effects, suggesting that manipulation of Abeta42 aggregation may not only quantitatively but also qualitatively modify brain pathology. Here, we compare the pathogenicity of human Abeta42 mutants with differing tendencies to aggregate. We examined the aggregation-prone, EOFAD-related Arctic mutation (Abeta42Arc) and an artificial mutation (Abeta42art) that …