Open Access. Powered by Scholars. Published by Universities.®

Medical Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Wright State University

Metabolism

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Medical Neurobiology

Acute Oxygen-Sensing Via Mitochondria-Generated Temperature Transients In Rat Carotid Body Type I Cells, Ryan J. Rakoczy, Clay M. Schiebrel, Christopher N. Wyatt Apr 2022

Acute Oxygen-Sensing Via Mitochondria-Generated Temperature Transients In Rat Carotid Body Type I Cells, Ryan J. Rakoczy, Clay M. Schiebrel, Christopher N. Wyatt

Neuroscience, Cell Biology & Physiology Faculty Publications

The Carotid Bodies (CB) are peripheral chemoreceptors that detect changes in arterial oxygenation and, via afferent inputs to the brainstem, correct the pattern of breathing to restore blood gas homeostasis. Herein, preliminary evidence is presented supporting a novel oxygen-sensing hypothesis which suggests CB Type I cell “hypoxic signaling” may in part be mediated by mitochondria-generated thermal transients in TASK-channel-containing microdomains. Distances were measured between antibody-labeled mitochondria and TASK-potassium channels in primary rat CB Type I cells. Sub-micron distance measurements (TASK-1: 0.33 ± 0.04 µm, n = 47 vs TASK-3: 0.32 ± 0.03 µm, n = …


Ethanol And Opioids Do Not Act Synergistically To Depress Excitation In Carotid Body Type I Cells, Ryan J. Rakoczy, Kajal Kamra, Yoon-Jae Yi, Christopher N. Wyatt Nov 2021

Ethanol And Opioids Do Not Act Synergistically To Depress Excitation In Carotid Body Type I Cells, Ryan J. Rakoczy, Kajal Kamra, Yoon-Jae Yi, Christopher N. Wyatt

Neuroscience, Cell Biology & Physiology Faculty Publications

The combination of opioids and ethanol can synergistically depress breathing and the acute ventilatory response to hypoxia. Multiple studies have shown that the underlying mechanisms for this may involve calcium channel inhibition in central neurons. But we have previously identified opioid receptors in the carotid bodies and shown that their activation inhibits calcium influx into the chemosensitive cells. Given that the carotid bodies contribute to the drive to breathe and underpin the acute hypoxic ventilatory response, we hypothesized that ethanol and opioids may act synergistically in these peripheral sensory organs to further inhibit calcium influx and therefore inhibit ventilation.

Methods …