Open Access. Powered by Scholars. Published by Universities.®

Medical Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Wright State University

Amino acid transport system A

Articles 1 - 1 of 1

Full-Text Articles in Medical Neurobiology

Placenta-Specific Slc38a2/Snat2 Knockdown Causes Fetal Growth Restriction In Mice, Owen R. Vaughan, Katarzyna Maksym, Elena Silva, Kenneth Barentsen, Russel V. Anthony, Sara L. Hillman, Thomas L. Brown, Rebecca Spencer, Anna L. David, Fredrick J. Rosario, Theresa L. Powell, Thomas Jansson Sep 2021

Placenta-Specific Slc38a2/Snat2 Knockdown Causes Fetal Growth Restriction In Mice, Owen R. Vaughan, Katarzyna Maksym, Elena Silva, Kenneth Barentsen, Russel V. Anthony, Sara L. Hillman, Thomas L. Brown, Rebecca Spencer, Anna L. David, Fredrick J. Rosario, Theresa L. Powell, Thomas Jansson

Neuroscience, Cell Biology & Physiology Faculty Publications

Fetal growth restriction (FGR) is a complication of pregnancy that reduces birth weight, markedly increases infant mortality and morbidity and is associated with later-life cardiometabolic disease. No specific treatment is available for FGR. Placentas of human FGR infants have low abundance of sodium-coupled neutral amino acid transporter 2 (Slc38a2/SNAT2), which supplies the fetus with amino acids required for growth. We determined the mechanistic role of placental Slc38a2/SNAT2 deficiency in the development of restricted fetal growth, hypothesizing that placenta-specific Slc38a2 knockdown causes FGR in mice. Using lentiviral transduction of blastocysts with a small hairpin RNA (shRNA), we achieved 59% knockdown of …