Open Access. Powered by Scholars. Published by Universities.®

Medical Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medical Neurobiology

Pre-Clinical Advancements In Biomarkers, Tools, And Therapeutics For A Metabolic Neurodegenerative Disease, Zoë Simmons Jan 2021

Pre-Clinical Advancements In Biomarkers, Tools, And Therapeutics For A Metabolic Neurodegenerative Disease, Zoë Simmons

Theses and Dissertations--Molecular and Cellular Biochemistry

Glycogen is the storage form of glucose and a highly important substrate for cellular metabolism. Characterization of the enzymes and mechanisms of glycogen metabolism began over 70 years ago and over the last 20 years, a previously unknown protein called laforin has emerged as an important contributor to glycogen metabolism homeostasis. Multiple labs demonstrated that laforin is a glycogen phosphatase and mutations in the gene encoding laforin cause the formation of aberrant glycogen-like aggregates called Lafora bodies (LBs). LBs are cytoplasmic, water-insoluble aggregates that drive neurodegeneration and early death in Lafora disease (LD) patients. The direct relationship between mutated laforin, …


Novel Targets For Mitochondrial Dysfunction Following Traumatic Brain Injury, Heather M. Yonutas Jan 2016

Novel Targets For Mitochondrial Dysfunction Following Traumatic Brain Injury, Heather M. Yonutas

Theses and Dissertations--Neuroscience

Mitochondrial dysfunction is a phenomenon observed in models of Traumatic Brain Injury (TBI). Loss of mitochondrial bioenergetics can result in diminished cellular homeostasis leading to cellular dysfunction and possible cellular death. Consequently, the resultant tissue damage can manifest as functional deficits and/or disease states. Therapeutic strategies to target this mitochondrial dysfunction have been investigated for models TBI and have shown promising effects.

For this project, we tested the hypothesis that mitoNEET, a novel mitochondrial membrane protein, is a target for pioglitazone mediated neuroprotection. To test this, we used a severe Controlled Cortical Impact (CCI) injury model in mitoNEET null and …


Targeting Astrocytes Ameliorates Neurologic Changes In A Mouse Model Of Alzheimer's Disease, Jennifer L. Furman, Diana M. Sama, John C. Gant, Tina L. Beckett, M. Paul Murphy, Adam D. Bachstetter, Linda J. Van Eldik, Christopher M. Norris Nov 2012

Targeting Astrocytes Ameliorates Neurologic Changes In A Mouse Model Of Alzheimer's Disease, Jennifer L. Furman, Diana M. Sama, John C. Gant, Tina L. Beckett, M. Paul Murphy, Adam D. Bachstetter, Linda J. Van Eldik, Christopher M. Norris

Pharmacology and Nutritional Sciences Faculty Publications

Astrocytes are the most abundant cell type in the brain and play a critical role in maintaining healthy nervous tissue. In Alzheimer's disease (AD) and most other neurodegenerative disorders, many astrocytes convert to a chronically "activated" phenotype characterized by morphologic and biochemical changes that appear to compromise protective properties and/or promote harmful neuroinflammatory processes. Activated astrocytes emerge early in the course of AD and become increasingly prominent as clinical and pathological symptoms progress, but few studies have tested the potential of astrocyte-targeted therapeutics in an intact animal model of AD. Here, we used adeno-associated virus (AAV) vectors containing the astrocyte-specific …