Open Access. Powered by Scholars. Published by Universities.®

Medical Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Medical Neurobiology

Taranis Functions With Cyclin A And Cdk1 In A Novel Arousal Center To Control Sleep In Drosophila., Dinis J.S. Afonso, Die Liu, Daniel R. Machado, Huihui Pan, James E.C. Jepson, Dragana Rogulja, Kyunghee Koh Jun 2015

Taranis Functions With Cyclin A And Cdk1 In A Novel Arousal Center To Control Sleep In Drosophila., Dinis J.S. Afonso, Die Liu, Daniel R. Machado, Huihui Pan, James E.C. Jepson, Dragana Rogulja, Kyunghee Koh

Department of Neuroscience Faculty Papers

Sleep is an essential and conserved behavior whose regulation at the molecular and anatomical level remains to be elucidated. Here, we identify TARANIS (TARA), a Drosophila homolog of the Trip-Br (SERTAD) family of transcriptional coregulators, as a molecule that is required for normal sleep patterns. Through a forward-genetic screen, we isolated tara as a novel sleep gene associated with a marked reduction in sleep amount. Targeted knockdown of tara suggests that it functions in cholinergic neurons to promote sleep. tara encodes a conserved cell-cycle protein that contains a Cyclin A (CycA)-binding homology domain. TARA regulates CycA protein levels and genetically …


Fus Transgenic Rats Develop The Phenotypes Of Amyotrophic Lateral Sclerosis And Frontotemporal Lobar Degeneration., Cao Huang, Hongxia Zhou, Jianbin Tong, Han Chen, Yong-Jian Liu, Dian Wang, Xiaotao Wei, Xu-Gang Xia Mar 2011

Fus Transgenic Rats Develop The Phenotypes Of Amyotrophic Lateral Sclerosis And Frontotemporal Lobar Degeneration., Cao Huang, Hongxia Zhou, Jianbin Tong, Han Chen, Yong-Jian Liu, Dian Wang, Xiaotao Wei, Xu-Gang Xia

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Fused in Sarcoma (FUS) proteinopathy is a feature of frontotemporal lobar dementia (FTLD), and mutation of the fus gene segregates with FTLD and amyotrophic lateral sclerosis (ALS). To study the consequences of mutation in the fus gene, we created transgenic rats expressing the human fus gene with or without mutation. Overexpression of a mutant (R521C substitution), but not normal, human FUS induced progressive paralysis resembling ALS. Mutant FUS transgenic rats developed progressive paralysis secondary to degeneration of motor axons and displayed a substantial loss of neurons in the cortex and hippocampus. This neuronal loss was accompanied by ubiquitin aggregation and …


Dopaminergic Neurons Derived From Human Induced Pluripotent Stem Cells Survive And Integrate Into 6-Ohda-Lesioned Rats., Jingli Cai, Ming Yang, Elizabeth Poremsky, Sarah Kidd, Jay S Schneider, Lorraine Iacovitti Jul 2010

Dopaminergic Neurons Derived From Human Induced Pluripotent Stem Cells Survive And Integrate Into 6-Ohda-Lesioned Rats., Jingli Cai, Ming Yang, Elizabeth Poremsky, Sarah Kidd, Jay S Schneider, Lorraine Iacovitti

Farber Institute for Neuroscience Faculty Papers

Cell replacement therapy could be an important treatment strategy for Parkinson's disease (PD), which is caused by the degeneration of dopamine neurons in the midbrain (mDA). The success of this approach greatly relies on the discovery of an abundant source of cells capable of mDAergic function in the brain. With the paucity of available human fetal tissue, efforts have increasingly focused on renewable stem cells. Human induced pluripotent stem (hiPS) cells offer great promise in this regard. If hiPS cells can be differentiated into authentic mDA neuron, hiPS could provide a potential autologous source of transplant tissue when generated from …


Interaction Of The Mu-Opioid Receptor With Gpr177 (Wntless) Inhibits Wnt Secretion: Potential Implications For Opioid Dependence., Jay Jin, Saranya Kittanakom, Victoria Wong, Beverly A S Reyes, Elisabeth J Van Bockstaele, Igor Stagljar, Wade Berrettini, Robert Levenson Jan 2010

Interaction Of The Mu-Opioid Receptor With Gpr177 (Wntless) Inhibits Wnt Secretion: Potential Implications For Opioid Dependence., Jay Jin, Saranya Kittanakom, Victoria Wong, Beverly A S Reyes, Elisabeth J Van Bockstaele, Igor Stagljar, Wade Berrettini, Robert Levenson

Department of Neurosurgery Faculty Papers

BACKGROUND: Opioid agonist drugs produce analgesia. However, long-term exposure to opioid agonists may lead to opioid dependence. The analgesic and addictive properties of opioid agonist drugs are mediated primarily via the mu-opioid receptor (MOR). Opioid agonists appear to alter neuronal morphology in key brain regions implicated in the development of opioid dependence. However, the precise role of the MOR in the development of these neuronal alterations remains elusive. We hypothesize that identifying and characterizing novel MOR interacting proteins (MORIPs) may help to elucidate the underlying mechanisms involved in the development of opioid dependence. RESULTS: GPR177, the mammalian ortholog of Drosophila …


Mitochondrial Mislocalization Underlies Abeta42-Induced Neuronal Dysfunction In A Drosophila Model Of Alzheimer's Disease., Kanae Iijima-Ando, Stephen A Hearn, Christopher Shenton, Anthony Gatt, Lijuan Zhao, Koichi Iijima Dec 2009

Mitochondrial Mislocalization Underlies Abeta42-Induced Neuronal Dysfunction In A Drosophila Model Of Alzheimer's Disease., Kanae Iijima-Ando, Stephen A Hearn, Christopher Shenton, Anthony Gatt, Lijuan Zhao, Koichi Iijima

Department of Biochemistry and Molecular Biology Faculty Papers

The amyloid-beta 42 (Abeta42) is thought to play a central role in the pathogenesis of Alzheimer's disease (AD). However, the molecular mechanisms by which Abeta42 induces neuronal dysfunction and degeneration remain elusive. Mitochondrial dysfunctions are implicated in AD brains. Whether mitochondrial dysfunctions are merely a consequence of AD pathology, or are early seminal events in AD pathogenesis remains to be determined. Here, we show that Abeta42 induces mitochondrial mislocalization, which contributes to Abeta42-induced neuronal dysfunction in a transgenic Drosophila model. In the Abeta42 fly brain, mitochondria were reduced in axons and dendrites, and accumulated in the somata without severe mitochondrial …


Abeta42 Mutants With Different Aggregation Profiles Induce Distinct Pathologies In Drosophila., Koichi Iijima, Hsueh-Cheng Chiang, Stephen A Hearn, Inessa Hakker, Anthony Gatt, Christopher Shenton, Linda Granger, Amy Leung, Kanae Iijima-Ando, Yi Zhong Feb 2008

Abeta42 Mutants With Different Aggregation Profiles Induce Distinct Pathologies In Drosophila., Koichi Iijima, Hsueh-Cheng Chiang, Stephen A Hearn, Inessa Hakker, Anthony Gatt, Christopher Shenton, Linda Granger, Amy Leung, Kanae Iijima-Ando, Yi Zhong

Department of Biochemistry and Molecular Biology Faculty Papers

Aggregation of the amyloid-beta-42 (Abeta42) peptide in the brain parenchyma is a pathological hallmark of Alzheimer's disease (AD), and the prevention of Abeta aggregation has been proposed as a therapeutic intervention in AD. However, recent reports indicate that Abeta can form several different prefibrillar and fibrillar aggregates and that each aggregate may confer different pathogenic effects, suggesting that manipulation of Abeta42 aggregation may not only quantitatively but also qualitatively modify brain pathology. Here, we compare the pathogenicity of human Abeta42 mutants with differing tendencies to aggregate. We examined the aggregation-prone, EOFAD-related Arctic mutation (Abeta42Arc) and an artificial mutation (Abeta42art) that …