Open Access. Powered by Scholars. Published by Universities.®

Medical Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Medical Neurobiology

Role Of Microglial Amylin Receptors In Mediating Beta Amyloid (Aβ)-Induced Inflammation, Wen Fu, Vlatka Vukojevic, Aarti Patel, Rania Soudy, David Mactavish, David Westaway, Kamaljit Kaur, Valeri Goncharuk, Jack Jhamandas Oct 2017

Role Of Microglial Amylin Receptors In Mediating Beta Amyloid (Aβ)-Induced Inflammation, Wen Fu, Vlatka Vukojevic, Aarti Patel, Rania Soudy, David Mactavish, David Westaway, Kamaljit Kaur, Valeri Goncharuk, Jack Jhamandas

Pharmacy Faculty Articles and Research

Background: Neuroinflammation in the brain consequent to activation of microglia is viewed as an important component of Alzheimer’s disease (AD) pathology. Amyloid beta (Aβ) protein is known to activate microglia and unleash an inflammatory cascade that eventually results in neuronal dysfunction and death. In this study, we sought to identify the presence of amylin receptors on human fetal and murine microglia and determine whether Aβ activation of the inflammasome complex and subsequent release of cytokines is mediated through these receptors.

Methods: The presence of dimeric components of the amylin receptor (calcitonin receptor and receptor activity modifying protein 3) …


Trkb-Enhancer Facilitates Functional Recovery After Traumatic Brain Injury, John Marshall, Joanna Szmydynger-Chodobska, Mengia S. Rioult-Pedotti, Kara Lau, Andrea T. Chin, Siva K. Reddy Kotla, Rakesh Tiwari, Keykavous Parang, Steven W. Threlkeld, Adam Chodobski Sep 2017

Trkb-Enhancer Facilitates Functional Recovery After Traumatic Brain Injury, John Marshall, Joanna Szmydynger-Chodobska, Mengia S. Rioult-Pedotti, Kara Lau, Andrea T. Chin, Siva K. Reddy Kotla, Rakesh Tiwari, Keykavous Parang, Steven W. Threlkeld, Adam Chodobski

Pharmacy Faculty Articles and Research

Brain-derived neurotrophic factor (BDNF), a key player in regulating synaptic strength and learning, is dysregulated following traumatic brain injury (TBI), suggesting that stimulation of BDNF signaling pathways may facilitate functional recovery. This study investigates whether CN2097, a peptidomimetic ligand which targets the synaptic scaffold protein, postsynaptic density protein 95, to enhance downstream signaling of tropomyosin-related kinase B, a receptor for BDNF, can improve neurological function after TBI. Moderate to severe TBI elicits neuroinflammation and c-Jun-N-terminal kinase (JNK) activation, which is associated with memory deficits. Here we demonstrate that CN2097 significantly reduces the post-traumatic synthesis of proinflammatory mediators and inhibits the …


Efficient Synthesis Of Cn2097 Using In Situ Activation Of Sulfhydryl Group, Shaban Darwish, Keykavous Parang, John Marshall, Dennis J. Goebel, Rakesh Tiwari Jun 2017

Efficient Synthesis Of Cn2097 Using In Situ Activation Of Sulfhydryl Group, Shaban Darwish, Keykavous Parang, John Marshall, Dennis J. Goebel, Rakesh Tiwari

Pharmacy Faculty Articles and Research

CN2097 (R7Cs-sCYK[KTE(β-Ala)]V) is a rationally designed peptidomimetic that shows effectiveness in preclinical models for the treatment of neurological disorders, such as Angelman syndrome, traumatic brain injury (TBI), and stroke. Because of its potential therapeutic activity for the treatment of human CNS disorders, there was an urgent need to develop an efficient strategy for large-scale synthesis of CN2097. The synthesis of CN2097 was accomplished using Fmoc/tBu solid phase chemistry in multiple steps. Two different peptide fragments (activated polyarginine peptide Npys-sCR7 and CYK[KTE(β-Ala)]V) were synthesized, followed by solution phase coupling in water. Activation of the polyarginine (CR7) …


Effects Of Phosphodiesterase 3a Modulation On Murine Cerebral Microhemorrhages, Rachita K. Sumbria, Vitaly Vasilevko, Mher Mahoney Grigoryan, Annlia Paganini-Hill, Ronald Kim, David H. Cribbs, Mark J. Fisher Jun 2017

Effects Of Phosphodiesterase 3a Modulation On Murine Cerebral Microhemorrhages, Rachita K. Sumbria, Vitaly Vasilevko, Mher Mahoney Grigoryan, Annlia Paganini-Hill, Ronald Kim, David H. Cribbs, Mark J. Fisher

Pharmacy Faculty Articles and Research

Background: Cerebral microbleeds (CMB) are MRI-demonstrable cerebral microhemorrhages (CMH) which commonly coexist with ischemic stroke. This creates a challenging therapeutic milieu, and a strategy that simultaneously protects the vessel wall and provides anti-thrombotic activity is an attractive potential approach. Phosphodiesterase 3A (PDE3A) inhibition is known to provide cerebral vessel wall protection combined with anti-thrombotic effects. As an initial step in the development of a therapy that simultaneously treats CMB and ischemic stroke, we hypothesized that inhibition of the PDE3A pathway is protective against CMH development.

Methods: The effect of PDE3A pathway inhibition was studied in the inflammation-induced and …


Tumor Necrosis Factor Α Inhibition For Alzheimer's Disease, Rudy Chang, Kei-Lwun Yee, Rachita K. Sumbria May 2017

Tumor Necrosis Factor Α Inhibition For Alzheimer's Disease, Rudy Chang, Kei-Lwun Yee, Rachita K. Sumbria

Pharmacy Faculty Articles and Research

Tumor necrosis factor α (TNF-α) plays a central role in the pathophysiology of Alzheimer’s disease (AD). Food and Drug Administration–approved biologic TNF-α inhibitors are thus a potential treatment for AD, but they do not cross the blood-brain barrier. In this short review, we discuss the involvement of TNF-α in AD, challenges associated with the development of existing biologic TNF-α inhibitors for AD, and potential therapeutic strategies for targeting TNF-α for AD therapy.


Neurofeedback Or Neuroplacebo?, Robert T. Thibault, Michael Lifshitz, Amir Raz Mar 2017

Neurofeedback Or Neuroplacebo?, Robert T. Thibault, Michael Lifshitz, Amir Raz

Psychology Faculty Articles and Research

This scientific commentary refers to ‘Better than sham? A double-blind placebo-controlled neurofeedback study in primary insomnia’, by Schabus et al.. (doi:10.1093/brain/awx011).