Open Access. Powered by Scholars. Published by Universities.®

Medical Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medical Neurobiology

The Intrinsic Severity Hypothesis Of Pharmacoresistance To Antiepileptic Drugs, Michael Rogawski Dec 2012

The Intrinsic Severity Hypothesis Of Pharmacoresistance To Antiepileptic Drugs, Michael Rogawski

Michael A. Rogawski

Pharmacoresistance to antiepileptic drugs (AEDs) is a barrier to seizure freedom for many persons with epilepsy. For nearly two decades, pharmacoresistance has been framed in terms of factors affecting the access of AEDs to their molecular targets in the brain or the actions of the drugs on these targets. Shortcomings in this prevailing view led to the formulation of the intrinsic severity hypothesis of pharmacoresistance to AEDs, which is based on the recognition that there are neurobiologic factors that confer phenotypic variation among individuals with etiologically similar forms of epilepsy and postulates that more severe epilepsy is more difficult to …


Preclinical Pharmacology Of Perampanel, A Selective Non-Competitive Ampa Receptor Antagonist, Michael A. Rogawski, Takahisa Hanada Dec 2012

Preclinical Pharmacology Of Perampanel, A Selective Non-Competitive Ampa Receptor Antagonist, Michael A. Rogawski, Takahisa Hanada

Michael A. Rogawski

Perampanel [2-(2-oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl) benzonitrile; E2007] is a potent, selective, orally active non-competitive AMPA receptor antagonist developed for the treatment of epilepsy. Perampanel has a 2,3′-bipyridin-6′-one core structure, distinguishing it chemically from other AMPA receptor antagonist classes. Studies in various physiological systems indicate that perampanel selectively inhibits AMPA receptor-mediated synaptic excitation without affecting NMDA receptor responses. Blocking of AMPA receptors occurs at an allosteric site that is distinct from the glutamate recognition site. Radioligand-binding studies suggest that the blocking site coincides with that of the non-competitive antagonist GYKI 52466, believed to be on linker peptide segments of AMPA receptor subunits that transduce …


Glia And Epilepsy: Excitability And Inflammation, Orrin Devinsky, Annamaria Vezzani, Souhel Najjar, Nihal C. De Lanerolle, Michael A. Rogawski Dec 2012

Glia And Epilepsy: Excitability And Inflammation, Orrin Devinsky, Annamaria Vezzani, Souhel Najjar, Nihal C. De Lanerolle, Michael A. Rogawski

Michael A. Rogawski

Epilepsy is characterized by recurrent spontaneous seizures due to hyperexcitability and hypersynchrony of brain neurons. Current theories of pathophysiology stress neuronal dysfunction and damage, and aberrant connections as relevant factors. Most antiepileptic drugs target neuronal mechanisms. However, nearly one-third of patients have seizures that are refractory to available medications; a deeper understanding of mechanisms may be required to conceive more effective therapies. Recent studies point to a significant contribution by nonneuronal cells, the glia – especially astrocytes and microglia – in the pathophysiology of epilepsy. This review critically evaluates the role of glia-induced hyperexcitability and inflammation in epilepsy.


Ampa Receptors As A Molecular Target In Epilepsy Therapy, Michael A. Rogawski Dec 2012

Ampa Receptors As A Molecular Target In Epilepsy Therapy, Michael A. Rogawski

Michael A. Rogawski

Epileptic seizures occur as a result of episodic abnormal synchronous discharges in cerebral neuronal networks. Although a variety of nonconventional mechanisms may play a role in epileptic synchronization, cascading excitation within networks of synaptically connected excitatory glutamatergic neurons is a classical mechanism. As is the case throughout the central nervous system, fast synaptic excitation within and between brain regions relevant to epilepsy is mediated predominantly by AMPA receptors. By inhibiting glutamate-mediated excitation, AMPA receptor antagonists markedly reduce or abolish epileptiform activity in in vitro preparations and confer seizure protection in a broad range of animal seizure models. NMDA receptors may …