Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Models

2021

Articles 1 - 1 of 1

Full-Text Articles in Medical Molecular Biology

Distinct Mechanisms Control Genome Recognition By P53 At Its Target Genes Linked To Different Cell Fates., Marina Farkas, Hideharu Hashimoto, Yingtao Bi, Ramana V Davuluri, Lois Resnick-Silverman, James J. Manfredi, Erik W. Debler, Steven B. Mcmahon Jan 2021

Distinct Mechanisms Control Genome Recognition By P53 At Its Target Genes Linked To Different Cell Fates., Marina Farkas, Hideharu Hashimoto, Yingtao Bi, Ramana V Davuluri, Lois Resnick-Silverman, James J. Manfredi, Erik W. Debler, Steven B. Mcmahon

Department of Biochemistry and Molecular Biology Faculty Papers

The tumor suppressor p53 integrates stress response pathways by selectively engaging one of several potential transcriptomes, thereby triggering cell fate decisions (e.g., cell cycle arrest, apoptosis). Foundational to this process is the binding of tetrameric p53 to 20-bp response elements (REs) in the genome (RRRCWWGYYYN0-13RRRCWWGYYY). In general, REs at cell cycle arrest targets (e.g. p21) are of higher affinity than those at apoptosis targets (e.g., BAX). However, the RE sequence code underlying selectivity remains undeciphered. Here, we identify molecular mechanisms mediating p53 binding to high- and low-affinity REs by showing that key determinants of the code are embedded …