Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Molecular Biology

The Role Of Mapk And Scf In The Destruction Of Med13 In Cyclin C Mediated Cell Death, David C Stieg, Stephen D Willis, Joseph Scuorzo, Mia Song, Vidyaramanan Ganesan, Randy Strich, Katrina F Cooper Dec 2017

The Role Of Mapk And Scf In The Destruction Of Med13 In Cyclin C Mediated Cell Death, David C Stieg, Stephen D Willis, Joseph Scuorzo, Mia Song, Vidyaramanan Ganesan, Randy Strich, Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

In response to stress, the yeast1 and mammalian2 cyclin C translocate from the nucleus to the cytoplasm, where it associates with the GTPase Drp1/Dnm1 to drive mitochondrial fragmentation and apoptosis. Therefore, the decision to release cyclin C represents a key life or death decision. In unstressed cells, the cyclin C‐Cdk8 kinase regulates transcription by associating with the Mediator of RNA polymerase II. We previously reported that the Mediator component Med13 anchors cyclin C in the nucleus3. Loss of Med13 function leads to constitutive cytoplasmic localization of cyclin C, resulting in fragmented mitochondria, hypersensitivity to stress and …


Structural And Functional Analysis Of A Β2-Adrenergic Receptor Complex With Grk5., Konstantin E. Komolov, Yang Du, Nguyen Minh Duc, Robin M. Betz, João P.G.L.M. Rodrigues, Ryan D. Leib, Dhabaleswar Patra, Georgios Skiniotis, Christopher M. Adams, Ron O. Dror, Ka Young Chung, Brian K. Kobilka, Jeffrey L. Benovic Apr 2017

Structural And Functional Analysis Of A Β2-Adrenergic Receptor Complex With Grk5., Konstantin E. Komolov, Yang Du, Nguyen Minh Duc, Robin M. Betz, João P.G.L.M. Rodrigues, Ryan D. Leib, Dhabaleswar Patra, Georgios Skiniotis, Christopher M. Adams, Ron O. Dror, Ka Young Chung, Brian K. Kobilka, Jeffrey L. Benovic

Department of Biochemistry and Molecular Biology Faculty Papers

The phosphorylation of agonist-occupied G-protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) functions to turn off G-protein signaling and turn on arrestin-mediated signaling. While a structural understanding of GPCR/G-protein and GPCR/arrestin complexes has emerged in recent years, the molecular architecture of a GPCR/GRK complex remains poorly defined. We used a comprehensive integrated approach of cross-linking, hydrogen-deuterium exchange mass spectrometry (MS), electron microscopy, mutagenesis, molecular dynamics simulations, and computational docking to analyze GRK5 interaction with the β2-adrenergic receptor (β2AR). These studies revealed a dynamic mechanism of complex formation that involves large conformational changes in the GRK5 RH/catalytic domain interface upon receptor binding. …