Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Molecular Biology

Reprogramming To Pluripotency Using Small Molecule Compounds, Brittany E. Greenberg Dec 2015

Reprogramming To Pluripotency Using Small Molecule Compounds, Brittany E. Greenberg

Theses and Dissertations (ETD)

The generation of induced pluripotent stem cells (iPSCs) through the use of small molecule compounds has evolved as a potential cellular reprogramming strategy. Individually, specific small molecule compounds have previously been shown to replace reprogramming transcription factors or enhance the efficiency of cellular reprogramming. More recently, a combination of small molecule compounds can replace all of the reprogramming factors. In this review, we describe in detail the generation of chemically induced pluripotent stem cells using small molecule inhibitors and activators that target either downstream protein kinases or modify chromatin structure to promote somatic cell reprogramming. In addition, epigenetic modulating small …


Molecular Mechanisms Underlying Alcohol-Induced Cerebral Artery Smooth Muscle Bk Channel Inhibition And Eventual Cerebral Vasoconstriction, Guruprasad Kuntamallappanavar May 2015

Molecular Mechanisms Underlying Alcohol-Induced Cerebral Artery Smooth Muscle Bk Channel Inhibition And Eventual Cerebral Vasoconstriction, Guruprasad Kuntamallappanavar

Theses and Dissertations (ETD)

Introduction and Rationale: Ethanol (EtOH) at concentrations obtained in circulation during moderate to heavy episodic drinking, such as during binge drinking (30-60 mM) causes cerebral vasoconstriction in many species, including humans. Using rodents as a model to study ethanolinduced cerebral artery constriction, our laboratory demonstrated that ethanol-induced cerebral artery constriction is due to drug-induced reduction of STOCs (Spontaneous Transient Outward Currents) in cerebral artery smooth muscle. In this tissue, STOCs result from the activity of large conductance, calcium-and voltage-gated potassium (BK) channels. Indeed, ethanol (50 mM) decreases the steady-state activity (NPo) of vascular myocyte BK channels leading to an increase …