Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medical Molecular Biology

Interfering With Dna Decondensation As A Strategy Against Mycobacteria, Enzo M. Scutigliani, Edwin R. Scholl, Anita E. Grootemaat, Sadhana Khanal, Jakub A. Kochan, Przemek M. Krawczyk, Eric A. Reits, Atefeh Garzan, Huy X. Ngo, Keith D. Green, Sylvie Garneau-Tsodikova, Jan M. Ruijter, Henk A. Van Veen, Nicole N. Van Der Wel Sep 2018

Interfering With Dna Decondensation As A Strategy Against Mycobacteria, Enzo M. Scutigliani, Edwin R. Scholl, Anita E. Grootemaat, Sadhana Khanal, Jakub A. Kochan, Przemek M. Krawczyk, Eric A. Reits, Atefeh Garzan, Huy X. Ngo, Keith D. Green, Sylvie Garneau-Tsodikova, Jan M. Ruijter, Henk A. Van Veen, Nicole N. Van Der Wel

Pharmaceutical Sciences Faculty Publications

Tuberculosis is once again a major global threat, leading to more than 1 million deaths each year. Treatment options for tuberculosis patients are limited, expensive and characterized by severe side effects, especially in the case of multidrug-resistant forms. Uncovering novel vulnerabilities of the pathogen is crucial to generate new therapeutic strategies. Using high resolution microscopy techniques, we discovered one such vulnerability of Mycobacterium tuberculosis. We demonstrate that the DNA of M. tuberculosis can condense under stressful conditions such as starvation and antibiotic treatment. The DNA condensation is reversible and specific for viable bacteria. Based on these observations, we hypothesized …


Amalgamation Of Nucleosides And Amino Acids In Antibiotic Biosynthesis, Sandra H. Barnard Jan 2013

Amalgamation Of Nucleosides And Amino Acids In Antibiotic Biosynthesis, Sandra H. Barnard

Theses and Dissertations--Pharmacy

The rapid increase in antibiotic resistance demands the identification of novel antibiotics with novel targets. One potential antibacterial target is the biosynthesis of peptidoglycan cell wall, which is both ubiquitous and necessary for bacterial survival. Both the caprazamycin-related compounds A-90289 and muraminomicin, as well as the capuramycin-related compounds A-503083 and A-102395 are potent inhibitors of the translocase I enzyme, one of the key enzymes required for cell wall biosynthesis. The caprazamycin-related compounds contain a core nonproteinogen b-hydroxy-a-amino acid referred to as 5’-C-glycyluridine (GlyU). Residing within the biosynthetic gene clusters of the aforementioned compounds is a shared open reading …


Prion Characterization Using Cell Based Approaches, Vadim Khaychuk Jan 2012

Prion Characterization Using Cell Based Approaches, Vadim Khaychuk

Theses and Dissertations--Microbiology, Immunology, and Molecular Genetics

Prions are the causative agents of a group of lethal, neurodegenerative conditions that include sheep scrapie, bovine spongiform encephalopathy (BSE), and human Creutzfeldt-Jakob disease (CJD). Prions are derived from the conversion of a normal, primarily alpha-helical, cellular prion protein (PrPC), to an infectious, beta sheet-rich conformer (PrPSc). Many unresolved issues surround the process of PrP conversion, and we know very little about cellular responses to these unique pathogens. Our lack of knowledge relates, in part, to the difficulty of infecting cells in vitro with prions. While expression of PrPC is an absolute requirement for prion …


Signaling Mechanisms Involved In The Generation Of Human Peripheral Itregs, Mary Catherine Reneer Jan 2012

Signaling Mechanisms Involved In The Generation Of Human Peripheral Itregs, Mary Catherine Reneer

Theses and Dissertations--Microbiology, Immunology, and Molecular Genetics

Maintaining balance in the human immune system is critical for the body’s ability to discriminate between foreign and self-antigens. This balance is achieved, in part, by a subpopulation of T cells known as induced regulatory T cells (iTregs). Dysregulation of this population may contribute to the onset and progression of cancer, chronic inflammation and autoimmune diseases. Therefore, manipulation of iTreg development holds promising therapeutic potential; however, studying this vital population has proven difficult due to low numbers, heterogeneous cell populations, substantial phenotypic differences between mouse and human cells, and the high plasticity seen in iTregs. These current limitations have prevented …