Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Molecular Biology

Mechanism Of Rare Variant In Acta2, P.Arg149cys, Driving Diverse Vascular Disease, Kaveeta Kaw May 2022

Mechanism Of Rare Variant In Acta2, P.Arg149cys, Driving Diverse Vascular Disease, Kaveeta Kaw

Dissertations & Theses (Open Access)

Heterozygous variants in ACTA2 (smooth muscle (SM) α-actin) predispose to thoracic aortic aneurysms and dissections (TAAD) and early-onset coronary artery disease (CAD). The most common ACTA2 mutation is a genetic alteration of arginine 149 to a cysteine, ACTA2 p.Arg149Cys, which accounts for disease in 24% of all ACTA2 mutation carriers.(1) ACTA2 p.Arg149Cys mutation carriers present with either TAAD or CAD but rarely have both diseases. To identify the molecular mechanisms dictating whether an individual with ACTA2 p.Arg149Cys develops TAAD or CAD, CRISPR/Cas9 technology was used to generate the mutant mouse, Acta2R149C/+, in a C57BL6 background. Acta2R149C/+ mice …


Direct Inhibition Of Cdk9 Blocks Hiv-1 Replication Without Preventing T Cell Activation In Primary Human Peripheral Blood Lymphocytes, Dominic Salerno, Muneer G Hasham, Renée Marshall Demarest, Judit Garriga, Alexander Y Tsygankov, Xavier Graña Dec 2007

Direct Inhibition Of Cdk9 Blocks Hiv-1 Replication Without Preventing T Cell Activation In Primary Human Peripheral Blood Lymphocytes, Dominic Salerno, Muneer G Hasham, Renée Marshall Demarest, Judit Garriga, Alexander Y Tsygankov, Xavier Graña

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

HIV-1 transcription is essential for the virus replication cycle. HIV-1 Tat is a viral transactivator that strongly stimulates the processivity of RNA polymerase II (RNAPII) via recruitment of the cyclin T1/CDK9 positive transcription elongation factor, which phosphorylates the C-terminal domain (CTD) of RNAPII. Consistently, HIV-1 replication in transformed cells is very sensitive to direct CDK9 inhibition. Thus, CDK9 could be a potential target for anti-HIV-1 therapy. A clearer understanding of the requirements for CDK9 activity in primary human T cells is needed to assess whether the CDK9-dependent step in HIV-1 transcription can be targeted clinically. We have investigated the effects …