Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Medical Molecular Biology

Modeling The Role Of Cyclin C In Connecting Stress-Induced Mitochondrial Fission To Apoptosis, Steven J. Doyle, Randy Strich May 2022

Modeling The Role Of Cyclin C In Connecting Stress-Induced Mitochondrial Fission To Apoptosis, Steven J. Doyle, Randy Strich

Rowan-Virtua Research Day

For normal cell function, exogenous signals must be correctly interpreted, and the proper response executed. The mitochondria are key regulatory nodes of cellular fate. For example, mitochondria undergo fission and fusion cycles depending on the energetic needs of the cell. Additionally, regulated cell death pathways also function at the mitochondria. Cyclin C is a transcriptional regulator of stress response and growth control genes. Following stress, a portion of cyclin C translocates to the cytoplasm, where it interacts with both the mitochondrial fission and apoptotic machinery. Based on these findings, we hypothesize that Cyclin C represents a key mediator linking transcription …


Substrate-Specific Effect On Sirtuin Conformation And Oligomerization, Jie Yang, Shannon L. Dwyer, Nathan I. Nicely, Brian P. Weiser May 2022

Substrate-Specific Effect On Sirtuin Conformation And Oligomerization, Jie Yang, Shannon L. Dwyer, Nathan I. Nicely, Brian P. Weiser

Rowan-Virtua Research Day

Human sirtuins are a family of nicotinamide adenine dinucleotide (NAD +)-dependent enzymes that are responsible for removing acyl modifications from lysine residues. Sirtuins are involved in the formation and proliferation of cancers and are thought to regulate the progression of neurodegenerative diseases. Although sirtuins can be pharmacologically targeted by small molecules, it is not easy to modulate the substrate selectivity of sirtuins despite the chemical diversity of their substrates. Here, we report substrate-specific effects on sirtuin conformation and oligomerization that regulate enzyme deacylase activity. We used fluorescent acyl peptide probes to study substrate interactions with two sirtuin isoforms: SIRT2 and …


Ung2 And Rpa Activity On Ssdna-Dsdna Junctions, Kathy Chen, Sharon Greenwood, Brian P. Weiser May 2022

Ung2 And Rpa Activity On Ssdna-Dsdna Junctions, Kathy Chen, Sharon Greenwood, Brian P. Weiser

Rowan-Virtua Research Day

Uracil DNA glycosylase, or UNG2, is an enzyme that is involved in DNA repair. Its primary job is to eliminate harmful uracil bases from DNA strands. To do this, the enzyme is assisted by replication protein A (RPA). RPA helps UNG2 in the identification of uracil bases by targeting UNG2 activity near ssDNA-dsDNA junctions (1-3). The results from assays presented here agree with published findings that showed UNG2 is heavily targeted by RPA to uracil bases that are close to ssDNA-dsDNA junctions (for example, uracil located 9 bps from the junction as opposed to 33 bps) (1,2). However, these previous …


Conservation And Divergence In The Heterochronic Pathway Of C. Elegans And C. Briggsae, Maria Ivanova, Eric G. Moss May 2022

Conservation And Divergence In The Heterochronic Pathway Of C. Elegans And C. Briggsae, Maria Ivanova, Eric G. Moss

Rowan-Virtua Research Day

The heterochronic pathway of Caenorhabditis elegans is exemplary as a mechanism of developmental timing: mutations in genes of this pathway alter the relative timing of diverse developmental events independent of spatial or cell type specific regulation. It is the most thoroughly characterized developmental timing pathway known. Most of the heterochronic genes are conserved across great evolutionary time, and a few homologs seem to have developmental timing roles in certain contexts. The degree to which other organisms have explicit developmental timing mechanisms, and what factors comprise those mechanisms, isn’t generally known.

Developmental pathways evolve even if the resulting morphology remains the …


Replication Protein A (Rpa) Targeting Of Uracil Dna Glycosylase (Ung2), Derek Chen, Brian P Weiser May 2021

Replication Protein A (Rpa) Targeting Of Uracil Dna Glycosylase (Ung2), Derek Chen, Brian P Weiser

Rowan-Virtua Research Day

Replication Protein A (RPA) is a single stranded DNA binding protein which stabilizes ssDNA for replication and repair. One function of RPA is to bind the DNA repair enzyme uracil DNA glycosylase (UNG2) and direct its activity towards ssDNA dsDNA junctions.

UNG2 removes uracil bases from DNA which can appear through dUMP misincorporation or through cytosine deamination. If uracil is present instead of a cytosine, then the original GC pair becomes a GU pair. The uracil will then base pair to adenine in the replicated daughter strand. This results in a GC → AT mutation that could contribute to cancer …


Acetic Acid Induces Sch9p-Dependent Translocation Of Isc1p From The Endoplasmic Reticulum Into Mitochondria, António Rego, Katrina F Cooper, Justin Snider, Yusuf A Hannun, Vítor Costa, Manuela Côrte-Real, Susana R Chaves Jun 2018

Acetic Acid Induces Sch9p-Dependent Translocation Of Isc1p From The Endoplasmic Reticulum Into Mitochondria, António Rego, Katrina F Cooper, Justin Snider, Yusuf A Hannun, Vítor Costa, Manuela Côrte-Real, Susana R Chaves

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Changes in sphingolipid metabolism have been linked to modulation of cell fate in both yeast and mammalian cells. We previously assessed the role of sphingolipids in cell death regulation using a well characterized yeast model of acetic acid-induced regulated cell death, finding that Isc1p, inositol phosphosphingolipid phospholipase C, plays a pro-death role in this process. Indeed, isc1∆ mutants exhibited a higher resistance to acetic acid associated with reduced mitochondrial alterations. Here, we show that Isc1p is regulated by Sch9p under acetic acid stress, since both single and double mutants lacking Isc1p or/and Sch9p have the same resistant phenotype, and SCH9 …


Persistent Stress-Induced Neuroplastic Changes In The Locus Coeruleus/Norepinephrine System, Olga Borodovitsyna, Neal Joshi, Daniel Chandler Jan 2018

Persistent Stress-Induced Neuroplastic Changes In The Locus Coeruleus/Norepinephrine System, Olga Borodovitsyna, Neal Joshi, Daniel Chandler

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Neural plasticity plays a critical role in mediating short- and long-term brain responses to environmental stimuli. A major effector of plasticity throughout many regions of the brain is stress. Activation of the locus coeruleus (LC) is a critical step in mediating the neuroendocrine and behavioral limbs of the stress response. During stressor exposure, activation of the hypothalamic-pituitary-adrenal axis promotes release of corticotropin-releasing factor in LC, where its signaling promotes a number of physiological and cellular changes. While the acute effects of stress on LC physiology have been described, its long-term effects are less clear. This review will describe how stress …


Analysis Of The Regulation And Function Of Cip2a To Identify Candidate Biomarkers For Prostate Cancer, Diana Savoly Apr 2014

Analysis Of The Regulation And Function Of Cip2a To Identify Candidate Biomarkers For Prostate Cancer, Diana Savoly

Graduate School of Biomedical Sciences Theses and Dissertations

Protein Phosphatase 2A (PP2A) is a tumor suppressor involved in the regulation of several signaling pathways and the cell cycle. PP2A becomes inactivated by several inhibitors, including Cancerous Inhibitor of PP2A (CIP2A). CIP2A has been identified as an oncogene, which is over-expressed in cancers and inhibits PP2A through direct interaction. CIP2A is recognized as a biomarker for cancer; however, it is not cancer-specific. Therefore, we identified and examined the use of CIP2A-regulated proteins as potential biomarkers in prostate cancer to better diagnose prostate cancer in patients. Currently, Prostate Specific Antigen (PSA) is widely used to detect prostate cancer; however, it …


Direct Inhibition Of Cdk9 Blocks Hiv-1 Replication Without Preventing T Cell Activation In Primary Human Peripheral Blood Lymphocytes, Dominic Salerno, Muneer G Hasham, Renée Marshall Demarest, Judit Garriga, Alexander Y Tsygankov, Xavier Graña Dec 2007

Direct Inhibition Of Cdk9 Blocks Hiv-1 Replication Without Preventing T Cell Activation In Primary Human Peripheral Blood Lymphocytes, Dominic Salerno, Muneer G Hasham, Renée Marshall Demarest, Judit Garriga, Alexander Y Tsygankov, Xavier Graña

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

HIV-1 transcription is essential for the virus replication cycle. HIV-1 Tat is a viral transactivator that strongly stimulates the processivity of RNA polymerase II (RNAPII) via recruitment of the cyclin T1/CDK9 positive transcription elongation factor, which phosphorylates the C-terminal domain (CTD) of RNAPII. Consistently, HIV-1 replication in transformed cells is very sensitive to direct CDK9 inhibition. Thus, CDK9 could be a potential target for anti-HIV-1 therapy. A clearer understanding of the requirements for CDK9 activity in primary human T cells is needed to assess whether the CDK9-dependent step in HIV-1 transcription can be targeted clinically. We have investigated the effects …