Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Molecular Biology

Effect Of Uracil Dna Glycosylase Activity On The Efficacy Of Thymidylate Synthase Inhibitor/Hdac Inhibitor Combination Therapies In Colon Cancer, Rashmi Kulkarni, Brian P Weiser May 2022

Effect Of Uracil Dna Glycosylase Activity On The Efficacy Of Thymidylate Synthase Inhibitor/Hdac Inhibitor Combination Therapies In Colon Cancer, Rashmi Kulkarni, Brian P Weiser

Rowan-Virtua Research Day

Human uracil DNA glycosylase (UNG2) is responsible for removing uracil bases from DNA and initiates base excision repair pathways. Accumulation of uracil or its fluorinated analogs in DNA is one of the killing mechanisms of thymidylate synthase (TS) inhibitors in cancer cells, and depletion of UNG2 often enhances the toxicity of these anticancer drugs. We tested the effect of UNG2 KO on the efficacy of multiple TS inhibitors (5-fluorouracil, fluorodeoxyuridine, and pemetrexed) and we determined that, except for 5-fluorouracil, all other TS inhibitors were significantly more potent in UNG2 KO cells compared to wild-type HT29 cells. Interestingly, UNG2 protein levels …


Safety And Efficacy Of Silver-Coated Biomaterials In Vivo, Megan Klem, Darien L. Seidman, Rahyan Mahmoud, Manuella Adu, Lei Yu, Jeffrey Hettinger, Renee M Demarest May 2022

Safety And Efficacy Of Silver-Coated Biomaterials In Vivo, Megan Klem, Darien L. Seidman, Rahyan Mahmoud, Manuella Adu, Lei Yu, Jeffrey Hettinger, Renee M Demarest

Rowan-Virtua Research Day

Overtreatment and overuse of antibiotics in healthcare and agricultural settings have contributed to the selective pressure on bacterial strains to develop resistance. Resistance can develop as a result of mutations and subsequent resistance genes that allow bacteria to survive against antibiotics. Novel silver-oxide coatings were developed and were previously demonstrated to prevent adhesion of gram-negative bacteria (Escherichia Coli and Pseudomonas Aeruginosa) to the disc, but did not prevent gram-positive bacterial adherence (Streptococcus Aureus). In order to determine whether the silver-oxide coatings are bacterial static and may be preventing progression to biofilm formation, in vivo analysis of S. Aureus attached to …