Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medical Molecular Biology

Structure Activity Relationship Studies Of Novel Diarylpentanoid Analogs Targeting The Androgen Receptor In Prostate Cancer Cells, Haili Coffin, Marco Bisoffi May 2017

Structure Activity Relationship Studies Of Novel Diarylpentanoid Analogs Targeting The Androgen Receptor In Prostate Cancer Cells, Haili Coffin, Marco Bisoffi

Student Scholar Symposium Abstracts and Posters

The development of prostate cancer (PCa) relies strongly on the activation of the androgen receptor (AR) signaling pathway by its natural ligand dihydrotestosterone. Furthermore, PCa progression to metastatic disease represents oncogene addiction to AR activity. Androgen ablation therapy is thus a mainstay therapy against this disease, but the development of ligand-independent AR activation and persisting AR expression eventually leads to castration resistant PCa (CRPC). Therefore, down-regulation of AR expression in PCa cells may be an effective therapeutic modality. The diarylpentanoid ca27 has previously been shown to down-regulate AR expression by an unknown mechanism of action. The present work represents a …


Linking Ligand-Induced Alterations In Androgen Receptor Structure To Differential Gene Expression: A First Step In The Rational Design Of Selective Androgen Receptor Modulators, Dmitri Kazmin, Tatiana Prytkova, C. Edgar Cook, Russell Wolfinger, Tzu-Ming Chu, David Beratan, J. D. Norris, Ching-Yi Chang, Donald P. Mcdonnell Jan 2006

Linking Ligand-Induced Alterations In Androgen Receptor Structure To Differential Gene Expression: A First Step In The Rational Design Of Selective Androgen Receptor Modulators, Dmitri Kazmin, Tatiana Prytkova, C. Edgar Cook, Russell Wolfinger, Tzu-Ming Chu, David Beratan, J. D. Norris, Ching-Yi Chang, Donald P. Mcdonnell

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We have previously identified a family of novel androgen receptor (AR) ligands that, upon binding, enable AR to adopt structures distinct from that observed in the presence of canonical agonists. In this report, we describe the use of these compounds to establish a relationship between AR structure and biological activity with a view to defining a rational approach with which to identify useful selective AR modulators. To this end, we used combinatorial peptide phage display coupled with molecular dynamic structure analysis to identify the surfaces on AR that are exposed specifically in the presence of selected AR ligands. Subsequently, we …