Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

PDF

Rowan University

Neoplasms

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Medical Molecular Biology

Characterization Of Malt1 Inhibitors And Their Effect On Leukemic Cell Growth Properties, Christina Snyder Jan 2017

Characterization Of Malt1 Inhibitors And Their Effect On Leukemic Cell Growth Properties, Christina Snyder

Graduate School of Biomedical Sciences Theses and Dissertations

Leukemia is the most common childhood cancer, with a combined 40,000 predicted new cases in the United States in 2016 [8]. The two most common subtypes are acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL) [9-11]. The commercially available inhibitor of Bruton’s tyrosine kinase (BTK) has shown promising results in clinical trials for CLL because of the importance of BCR signaling in CLL [12-15]. Recent studies suggest that the outgrowth of BTK inhibitor resistant clonal cells in some CLL patients results in a treatment-refractory phenotype [16-18]. MALT1, a protein involved in BCR activation of the NF-κB pathway that functions …


Hexokinase Ii Localization Is Independent Of Ampk Activation In Hela Cells, Alyssa Brown Jan 2016

Hexokinase Ii Localization Is Independent Of Ampk Activation In Hela Cells, Alyssa Brown

Graduate School of Biomedical Sciences Theses and Dissertations

In order for a cancer cell to thrive, it must alter its metabolism to produce the energy needed for rapid growth. Cells accomplish this by the Warburg Effect, or switching metabolism to aerobic glycolysis, where a cell can rapidly break down sugar into ATP, lactic acid and additional byproducts. Hexokinase 2, the enzyme that catalyzes the first committed step of glycolysis, may also be upregulated in cancer cells to increase glucose breakdown. Similar proteins for metabolism are found in both S. cerevisiae and mammalian cells. S. cerevisiae regulates metabolism through glucose repression, by Snf1 (mammalian homolog: AMPK) activation, which aids …