Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

Med13

Articles 1 - 3 of 3

Full-Text Articles in Medical Molecular Biology

The Role Of Med13 In Proteaphagy, John Sauer, Brittany Friedson, Katrina Cooper May 2024

The Role Of Med13 In Proteaphagy, John Sauer, Brittany Friedson, Katrina Cooper

Rowan-Virtua Research Day

Regulation of proteasomes is important for adaptation to cellular stress. Previous studies have shown that following starvation stress, proteasomes are targeted for destruction by autophagy. However, how cells control proteasomes in response to nitrogen starvation remains unclear. This study delves into the intricate interplay between Med13, proteaphagy, and stress response regulation, aiming to elucidate their roles in cellular survival mechanisms. It focused on the highly conserved Cdk8 kinase module (CKM) of the Mediator complex a that plays a pivotal involvement in cellular signaling and gene regulation under stress conditions. During the investigation, we asked if the degradation of specific proteasome …


The Involvement Of Ubiquitin In Med13 Cyclin C Degradation Following Cellular Stress, Ayesha Gurnani, Brittany Friedson, Katrina Cooper May 2023

The Involvement Of Ubiquitin In Med13 Cyclin C Degradation Following Cellular Stress, Ayesha Gurnani, Brittany Friedson, Katrina Cooper

Rowan-Virtua Research Day

The Cdk8 Kinase Module is a dissociable regulator of cellular stress response genes, with degradation of its components Med13 and cyclin C eventually determining cell fate decisions such as engaging cell survival or cell death mechanisms. We aimed to explore the roles of ubiquitin in degradation of the Cdk8 Kinase Module following nitrogen starvation, with respect to the potential involvement of deubiquitinating enzyme Doa4, lysine linkage at position K63, and E2 ubiquitin conjugating enzymes Ubc4 and Ubc5. We utilized Western blot analysis to observe nitrogen starvation-induced degradation of Med13-HA in wild-type, doa4 mutant, and K63R yeast strains; degradation of cyclin …


The Role Of Mapk And Scf In The Destruction Of Med13 In Cyclin C Mediated Cell Death, David C Stieg, Stephen D Willis, Joseph Scuorzo, Mia Song, Vidyaramanan Ganesan, Randy Strich, Katrina F Cooper Dec 2017

The Role Of Mapk And Scf In The Destruction Of Med13 In Cyclin C Mediated Cell Death, David C Stieg, Stephen D Willis, Joseph Scuorzo, Mia Song, Vidyaramanan Ganesan, Randy Strich, Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

In response to stress, the yeast1 and mammalian2 cyclin C translocate from the nucleus to the cytoplasm, where it associates with the GTPase Drp1/Dnm1 to drive mitochondrial fragmentation and apoptosis. Therefore, the decision to release cyclin C represents a key life or death decision. In unstressed cells, the cyclin C‐Cdk8 kinase regulates transcription by associating with the Mediator of RNA polymerase II. We previously reported that the Mediator component Med13 anchors cyclin C in the nucleus3. Loss of Med13 function leads to constitutive cytoplasmic localization of cyclin C, resulting in fragmented mitochondria, hypersensitivity to stress and …