Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

Autoantibodies

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Medical Molecular Biology

The Autoimmune System: The Effect Of Physiological Stressors On Autoantibody Glycosylation And Fidelity Of Autoantibody Profiles, Rahil Kheirkhah May 2020

The Autoimmune System: The Effect Of Physiological Stressors On Autoantibody Glycosylation And Fidelity Of Autoantibody Profiles, Rahil Kheirkhah

Graduate School of Biomedical Sciences Theses and Dissertations

The presence of thousands of autoantibodies (aABs) in the human sera is typical, and therefore it is possible to identify an aAB profile for each individual. In the first part of this thesis, we will show the cerebrospinal fluid also exhibits an extraordinarily complex immunoglobulin G aAB profile that is composed of thousands of aABs. We show that the pattern of expression of individual aABs in CSF closely mimics that in the blood, indicative of a blood-based origin for CSF aABs. In addition, using longitudinal serum samples obtained over a span of nine years, we show remarkable stability in aAB …


Natural Autoantibodies: Origin, Function And Utility For Diagnosis Of Disease, Abhirup Sarkar Aug 2019

Natural Autoantibodies: Origin, Function And Utility For Diagnosis Of Disease, Abhirup Sarkar

Graduate School of Biomedical Sciences Theses and Dissertations

Autoantibodies (aAbs) by the simplest definitions have been described as antibodies against self-antigens and were exclusively associated with autoimmune diseases. Eventually, studies demonstrated that they are abundant in the blood of all human sera, regardless of age, gender, or the presence or absence of disease, and were thus named as ‘natural autoantibodies’. The underlying reason for their ubiquity has remained elusive, but we have hypothesized that they are responsible for clearing blood-borne cell and tissue debris generated under conditions of health and disease. To test this, we chose to use two widely different disease model systems, namely neurodegenerative diseases and …